我市在夜明珠与黄柏河交汇形成的平湖水面上修建”三峡游轮中心”.其中有小型游艇出租给游客游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为,;租用2小时以上且不超过3小时的概率分别为,,且两人租用的时间都不超过4小时.(Ⅰ)求甲、乙两人所付费用相同的概率;(Ⅱ)设甲、乙两人所付的费用之和为随机变量,求的分布列与数学期望.
已知函数=其中且。 (1)求函数的定义域; (2)判断函数的奇偶性,并证明; (3)若,求的取值范围。
已知△ABC三边所在直线方程为AB:,BC:,CA:求AC边上的高所在的直线方程
如图,ABCD是正方形,O是正方形的中心,PO面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC平面BDE
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且 (1)求证:不论λ为何值,总有平面BEF⊥平面ABC; (2)当λ为何值时,平面BEF⊥平面ACD?
如图,在三棱柱中,四边形是菱形,四边形是矩形,,,,. (1)求证:平面平面; (2)求直线与平面所成角的正切值; (3)求点到平面的距离.