本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为 1 2 , 1 4 ;两小时以上且不超过三小时还车的概率分别为 1 2 , 1 4 ;两人租车时间都不会超过四小时. (Ⅰ)求出甲、乙所付租车费用相同的概率; (Ⅱ)求甲、乙两人所付的租车费用之和为随机变量 ξ ,求 ξ 的分布列与数学期望 E ξ .
设、是焦距等于的椭圆的左、右顶点,曲线上的动点满足,其中和分别是直线、的斜率. (1)求曲线的方程; (2)直线与椭圆只有一个公共点且交曲线于两点,若以线段为直径的圆过点,求直线的方程.
已知数列满足,. (1)求证:数列是等差数列; (2)设,数列的前项之和为,求证:.
如图,是边长为的正方形,是矩形,平面平面,为的中点. (1)求证://平面; (2)若三棱锥的体积为,求三棱柱的体积.
汽车是碳排放量比较大的行业之一,某地规定,从2015年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km). 经测算得乙品牌轻型汽车二氧化碳排放量的平均值为. (1)求表中的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性; (2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过的概率是多少?
已知函数 (1)求函数的最小正周期和最大值; (2)设的三内角分别是A、B、C.若,且,求边和的值.