设 d 为非零实数, a n = 1 n C n 1 d + 2 C n 2 d 2 + ⋯ + n - 1 C n n - 1 d n - 1 + n C n n d n n ∈ N * .
(I) 写出 a 1 , a 2 , a 3 并判断 a n 是否为等比数列.若是,给出证明;若不是,说明理由; (II)设 b n = n d a n n ∈ N * ,求数列 b n 的前 n 项和 S n .
(本小题满分12分)已知数列为等差数列,且 (1)求数列的通项公式; (2)证明….
(本题13分)设椭圆的左右焦点分别为,,上顶点为,过点与垂直的直线交轴负半轴于点,且是的中点. (1)求椭圆的离心率; (2)若过点的圆恰好与直线相切,求椭圆的方程; (3)在(2)的条件下过右焦点作斜率为的直线与椭圆相交于两点,在轴上是否存在点使得以为邻边的平行四边形为菱形,如果存在,求出的取值范围,如果不存在,说明理由。
(本题12分)如图,平面,点在上,∥,四边形为直角梯形,,, (1)求证:平面; (2)求二面角的余弦值; (3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。
(本题11分)已知圆,过原点的直线与圆相交于两点 (1) 若弦的长为,求直线的方程; (2)求证:为定值。
(本题10分)三棱柱中,侧棱底面,,, (1)求异面直线与所成角的余弦值; (2)求证: