高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

任意确定四个日期,其中至少有两个是星期天的概率为________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难

乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难

排球比赛的规则是5局3胜制,A、B两队每局比赛获胜的概率分别为
前2局中B队以2:0领先,则最后 B队获胜的概率为       .

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难

小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是  

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较难




号互不相同的概率为            

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

设随机变量,则________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

投掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数X的期望是________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

设50件商品中有15件一等品,其余为二等品.现从中随机选购2件,则所购2件商品中恰有一件一等品的概率为________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

在一个盒子中,放有标号分别为的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为,记的数学期望   ▲ .

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是________________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

为了研究性别不同的高中学生是否爱好某项运动,运用列联表进行独立性检验,经计算,则所得到的统计学结论是:有______的把握认为“爱好该项运动与性别有关”.附:


0.050
0.010
0.001

3.841
6.635
10.828

 

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

某射手每次射击击中目标的概率为P,每次射击的结果相互独立,那么在连续5次射击中,前2次都未击中目标,后3次都击中目标的概率为            .

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

有20个零件,其中16个一等品,4个二等品,若从这20个零件中任意取3个,那么至少有1个一等品的概率是________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是,乙获胜的概率是,则比赛以甲三胜一负而结束的概率为________.

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:中等

甲、乙两人将参加某项测试,他们能达标的概率都是0.8,设随机变量为两人中能达标的人数,则的数学期望        .   

  • 更新:2020-03-18
  • 题型:填空题
  • 难度:较易

高中数学正交试验设计方法填空题