高中数学

从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组
[75,85)
[85,95)
[95,105)
[105,115)
[115,125)
频数
4
16
40
32
8

(1)在答题卡上作出这些数据的频率分布直方图;(用阴影涂黑)

(2)估计这种产品质量指标值的平均数及中位数;
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的75%”的规定?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

医生的专业能力参数可有效衡量医生的综合能力,越大,综合能力越强,并规定: 能力参数不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力的频率分布直方图:

(Ⅰ)求出这个样本的合格率、优秀率;
(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数为同一组的概率;
②设这2名医生中能力参数为优秀的人数为,求随机变量的分布列和期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

从参加环保知识竞赛的学生中抽出60名,将其成绩整理后画出的频率分布直方图如下.观察图形,回答下列问题:

(1)49.5——69.5这一组的频率和频数分别为多少?
(2)估计这次环保知识竞赛成绩的中位数及平均成绩.(精确到小数点后一位)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.

(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校高二某班的一次数学测试成绩(满分为分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求分数在的频率及全班人数;
(2)求分数在之间的频数,并计算频率分布直方图中间的矩形的高;
(3)若要从分数在 之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图: 

分组(日销售量)
频率(甲种酸奶)
[ 0,10]
0.10
(10,20]
0.20
(20,30]
0.30
(30,40]
0.25
(40,50]
0.15

 

(Ⅰ)写出频率分布直方图中的的值,并作出甲种酸奶日销售量的频率分布直方图;

(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较的大小;(只需写出结论)
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲  82  81  79  78  95  88  93  84
乙  92  95  80  75  83  80  90  85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)分析,你认为选派哪位学生参加合适?请说明理由
参考公式:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一次考试中,5名同学数学、物理成绩如下表所示:

学生
A
B
C
D
E
数学(x分)
89
91
93
95
97
物理(y分)
87
89
89
92
93

 
(1)根据表中数据,求物理分对数学分的回归方程:
(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以表示选中的同学中物理成绩高于90分的人数,求随机变量的分布列及数学期望.(附:回归方程中,

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我国政府对PM2.5采用如下标准:

PM2.5日均值m(微克/立方米)
空气质量等级
 
一级

二级

超标

某市环保局从一年365天的市区PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所
示(十位为茎,个位为叶).

树茎
树叶
2
8 2
3
8 2 1
4
4 5
6
3 8
7
7

(1)求这10天数据的中位数;
(2)从这10天数据中任取4天的数据,记为空气质量达到一级的天数,求的分布列和期望;
(3)以这10天的数据来估计这一年365天的空气质量情况,并假定每天之间的空气质量相互不影响.记
为这一年中空气质量达到一级的天数,求的平均值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:
; 
(1)完成频率分布表,并画出频率分布直方图以及频率分布折线图;
(2)据上述图表,估计数据落在范围内的可能性是百分之几?
(3)数据小于11.20的可能性是百分之几?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

国家环境标准制定的空气质量指数与空气质量等级对应关系如下表:

由全国重点城市环境监测网获得2月份某五天甲城市和乙城市的空气质量指数数据用茎叶图表示如图:

(Ⅰ)试根据上面的统计数据,判断甲、乙两个城市的空气质量指数的方差的大小关系(只需写出结果);
(Ⅱ)试根据上面的统计数据,估计甲城市某一天空气质量等级为2级良的概率;
(Ⅲ)分别从甲城市和乙城市的统计数据中任取一个,试求这两个城市空气质量等级相同的概率.
(注:s2=[(x12+(x22+…+(xn2],其中为数据x1,x2,…,xn的平均数.)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,
求数学成绩在[50,90)之外的人数.

分数段
[50,60)
[60, 70)
[70,80)
[80,90)
x∶y
1∶1
2∶1
3∶4
4∶5

 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组 ,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.

(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校联合社团有高一学生126人,高二学生105人,高三学生42人,现
用分层抽样的方法从中抽取13人进行关于社团活动的问卷调查.设问题的选择分为“赞同”和“不赞同”两种,且每人都做出了一种选择.下面表格中提供了被调查学生答卷情况的部分信息.
(1)完成下列统计表:

(2)估计联合社团的学生中“赞同”的人数;
(3)从被调查的高二学生中选取2人进行访谈,求选到的两名学生中恰好有一人“赞同”的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
某校从参加高二年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,估计本次数学成绩的平均数;
(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求恰好有人分数在的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学误差估计解答题