甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下: 甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据; (2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)分析,你认为选派哪位学生参加合适?请说明理由 参考公式:
(本小题满分14分)已知数列是递增数列,且满足 (Ⅰ)若是等差数列,求数列的通项公式; (Ⅱ)对于(Ⅰ)中,令,求数列的前项和.
(本小题满分14分)在钝角三角形ABC中,、、分别是角A、B、C的对边,,,且∥. (Ⅰ)求角A的大小; (Ⅱ)求函数的值域.
已知双曲线方程为,椭圆C以该双曲线的焦点为顶点,顶点为焦点。 (1)当,时,求椭圆C的方程; (2)在(1)的条件下,直线:与轴交于点P,与椭圆交与A,B两点,若O为坐标原点,与面积之比为2:1,求直线的方程; (3)若,椭圆C与直线:有公共点,求该椭圆的长轴长的最小值。
动圆C的方程为。 (1)若,且直线与圆C交于A,B两点,求弦长; (2)求动圆圆心C的轨迹方程; (3)若直线与动圆圆心C的轨迹有公共点,求的取值范围。
曲线C是平面内与两个定点和的距离的积等于常数 的点的轨迹,给出下列三个结论: ①曲线C过坐标原点; ②曲线C关于坐标原点对称; ③若点P在曲线C上,则△的面积不大于。 其中,所有正确结论的序号为_________。