高中数学

20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.

(1)求频率分布直方图中的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题14分)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:

(Ⅰ)填充频率分布表的空格(将答案直接填在表格内);

分组
频数
频率
50.5~60.5
4
0.08
60.5~70.5
 
0.16
70.5~80.5
10
 
80.5~90.5
16
0.32
90.5~100.5
 
 
合计
50
1.00

 
(Ⅱ)补全频数直方图;
(Ⅲ)学校决定成绩在75.5~85.5分的学生为二等奖,问该校获得二等奖的学生约为多少人?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.

(1)求第四小组的频率和参加这次测试的学生人数;
(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?
(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

扶余市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于分的有参赛资格,分以下(不包括分)的则被淘汰。若现有人参加测试,学生成绩的频率分布直方图如下:

(1)求获得参赛资格的人数;
(2)根据频率分布直方图,估算这名学生测试的平均成绩.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题12分)某商业集团对所属的200家连锁店进行评估,并依据得分(最低60分,最高100分,可以是小数)将其分别评定为A、B、C、D四个等级,评估标准如下表:

评估得分
[60,70)
[70,80)
[80,90)
[90,100)
评定类型
D
C
B
A

 
现将各连锁店的评估分数进行统计分析,并将其画成频率分布直方图如下.

(1)请补全频率分布直方图(画出[70,80)那组对应的小长方形并标上对应高度)
(2)现欲用分层抽样的方法从这200家连锁店中抽取40家作为代表进行座谈会,试问其中A、D类连锁店分别应抽取多少家?
(3)试根据频率分布直方图估计这200家连锁店评估得分的中位数(结果保留一位小数).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校为了解高三开学数学考试的情  况,从高三的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60 )的学生人数为6.

(1)求直方图中x的值;
(2)试根据样本估计“该校高三学生期末数学考试成绩≥70”的
概率;
(3)试估计所抽取的数学成绩的平均数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)某市为了解全市居民日常用水量的分布情况,现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如下图表:

分组
频数
频率
[0,1)
25
y
[1,2)
 
0.19
[2,3)
50
x
[3,4)
 
0.23
[4,5)
 
0.18
[5,6]
5
 

 

(Ⅰ)分别求出x,n,y的值;
(Ⅱ)若从样本中月均用水量在[5,6]内的5位居民a,b,c,d,e中任选2人作进一步的调查研究,求居民a被选中的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组
[75,85)
[85,95)
[95,105)
[105,115)
[115,125)
频数
6
26
38
22
8

 
(1)在答题卡上作出这些数据的频率分布直方图:

(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

国家环境标准制定的空气质量指数与空气质量等级对应关系如下表:

由全国重点城市环境监测网获得2月份某五天甲城市和乙城市的空气质量指数数据用茎叶图表示如图:

(Ⅰ)试根据上面的统计数据,判断甲、乙两个城市的空气质量指数的方差的大小关系(只需写出结果);
(Ⅱ)试根据上面的统计数据,估计甲城市某一天空气质量等级为2级良的概率;
(Ⅲ)分别从甲城市和乙城市的统计数据中任取一个,试求这两个城市空气质量等级相同的概率.
(注:s2=[(x12+(x22+…+(xn2],其中为数据x1,x2,…,xn的平均数.)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,
求数学成绩在[50,90)之外的人数.

分数段
[50,60)
[60, 70)
[70,80)
[80,90)
x∶y
1∶1
2∶1
3∶4
4∶5

 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组 ,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.

(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校联合社团有高一学生126人,高二学生105人,高三学生42人,现
用分层抽样的方法从中抽取13人进行关于社团活动的问卷调查.设问题的选择分为“赞同”和“不赞同”两种,且每人都做出了一种选择.下面表格中提供了被调查学生答卷情况的部分信息.
(1)完成下列统计表:

(2)估计联合社团的学生中“赞同”的人数;
(3)从被调查的高二学生中选取2人进行访谈,求选到的两名学生中恰好有一人“赞同”的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
某校从参加高二年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,估计本次数学成绩的平均数;
(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求恰好有人分数在的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.

分数段
[40,50)
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]

3
9
18
15
6
9

6
4
5
10
13
2

 
估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;

 
优分
非优分
合计
男生
 
 
 
女生
 
 
 
合计
 
 
100

 
(2)规定80分以上为优分(含80分),请你根据已知条件作出列联表,并判断是否有以上的把握认为“数学成绩与性别有关”.
附表及公式


0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828

.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学误差估计解答题