为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.(1)求第四小组的频率和参加这次测试的学生人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
如图所示,已知直线l:y=x,圆C1的圆心为(3,0),且经过点A(4,1). (1)求圆C1的方程; (2)若圆C2与圆C1关于直线l对称,点B、D分别为圆C1、C2上任意一点,求|BD|的最小值.
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值. (1)直线l1过点(-3,-1),并且直线l1与l2垂直; (2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其 中t∈R. ①当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程; ②当t≠0时,求f(x)的单调区间.
设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x) 的图象关于直线x=-对称,且f′(1)=0. ①求实数a,b的值;②求函数f(x)的极值.
已知函数f(x)=x3-ax-1 (1)若f(x)在实数集R上单调递增,求a的取值范围; (2)是否存在实数a,使f(x)在(-1,1)上单调递减,若存在,求出a的取值范围;若不存在,说明理由; (3)证明f(x)=x3-ax-1的图象不可能总在直线y=a的上方.