在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.
设力F作用在质点m上使m沿x轴从x=1运动到x=10,已知F=x2+1且力的方向和x轴的正向相同,求F对质点m所作的功.
求由直线x=0,x=1,y=0和曲线y=x(x-1)围成的图形面积.
求抛物线f(x)=1+x2与直线x=0,x=1,y=0所围成的平面图形的面积S.
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.①写出y关于r的函数表达式,并求该函数的定义域;②求该容器的建造费用最小时的r.
请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形,斜边的两个端点,设AE=FB=x(cm).①某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?②某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.