在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.
已知数列满足,其中N*. (Ⅰ)设,求证:数列是等差数列,并求出的通项公式; (Ⅱ)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.
已知甲箱中只放有x个红球与y个白球且,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球. (Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时的值; (Ⅱ)当时,求取出的3个球中红球个数的期望.
设. (Ⅰ)求的最大值及最小正周期; (Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,锐角A满足,,求的值.
已知函数. (1)当时,求曲线在点处的切线方程; (2)对任意,在区间上是增函数,求实数的取值范围.
如图,在四棱锥中,底面是矩形,分别为的中点,,且 (1)证明:; (2)求二面角的余弦值。