20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.
(1)求频率分布直方图中的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数.
某校高三年级学生600名,从参加期中考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:
分组 |
频数 |
频率 |
2 |
0.04 |
|
4 |
0.08 |
|
8 |
0.16 |
|
11 |
0.22 |
|
15 |
0.30 |
|
4 |
0.08 |
|
合计 |
50 |
1 |
(1)写出的值;
(2)估计该校高三学生数学成绩在120分以上学生人数;
(3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在中选两位同学,来帮助成绩在中的某一位同学,已知甲同学的成绩为56分,乙同学的成绩为145分,求甲乙在同一小组的概率.
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 |
[75,85) |
[85,95) |
[95,105) |
[105,115) |
[115,125) |
频数 |
6 |
26 |
38 |
22 |
8 |
(1)在答题卡上作出这些数据的频率分布直方图:
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率;
(2)若在同一组数据中,将该组区间的中点值(如:区间[100,110)的中点值为=105)作为这组数据的平均分,据此,估计本次考试的平均分;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
某校数学教师为调查本校2014届学生的高考数学成绩情况,用简单随机抽样的方法抽取20名学生的成绩,样本数据的茎叶图如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段 |
总计 |
|||||
频 数 |
|
|
|
|
|
|
频 率 |
|
|
|
|
(1)求表中的值及分数在范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在内为及格);
(2)从大于等于110分的成绩中随机选2个成绩,求这2个成绩的平均分不小于130分的概率。
对某班学生是爱好体育还是爱好文娱进行调查,根据调查得到的数据,所绘制的二维条形图如图.
(1)根据图中的数据,填好2×2列表,并计算在多大的程度上可以认为性别与是否爱好体育有关系:
(2)若已从男生中选出3人,女生中选出2人,从这5人中选出2人担任活动的协调人,求选出的两人性别相同的概率.
|
男 |
女 |
总计 |
爱好体育 |
|
|
|
爱好文娱 |
|
|
|
总 计 |
|
|
|
参考数据:
0.5 |
0.4 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
参考公式:
为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).
(1)求样本容量和频率分布直方图中的、的值;
(2)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生参加“中国谜语大会”,求所抽取的名学生中至少有一人得分在内的概率.
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的a,b的值;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表
如下:
分组(重量) |
||||
频数(个) |
5 |
10 |
20 |
15 |
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
从参加环保知识竞赛的学生中抽出60名,将其成绩整理后画出的频率分布直方图如下.观察图形,回答下列问题:
(1)49.5——69.5这一组的频率和频数分别为多少?
(2)估计这次环保知识竞赛成绩的中位数及平均成绩.(精确到小数点后一位)
为了解某校学生暑期参加体育锻炼的情况,对某班M名学生暑期参加体育锻炼的次数进行了统计,得到如下的频率分布表与直方图:
组别 |
锻炼次数 |
频数(人) |
频率 |
1 |
2 |
0.04 |
|
2 |
11 |
0.22 |
|
3 |
16 |
||
4 |
15 |
0.30 |
|
5 |
|||
6 |
2 |
0.04 |
|
[ |
合计 |
1.00 |
(1)求频率分布表中、、及频率分布直方图中的值;
(2)求参加锻炼次数的众数(直接写出答案,不要求计算过程);
(3)若参加锻炼次数不少于18次为及格,估计这次体育锻炼的及格率。
甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)分析,你认为选派哪位学生参加合适?请说明理由
参考公式:
(本小题满分12分)某中学高二年级举行数学竞赛,共有800名学生参加.为了了解本次竞赛成绩,从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计。请你根据频率分布表,解答下列问题:
(1)填充下列频率分布表中的空格;
(2)估计众数、中位数和平均数;
(3)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
分组(分数) |
频数 |
频率 |
[60,70] |
① |
0.12 |
[70,80] |
20 |
② |
[80,90] |
③ |
0.24 |
[90,100] |
④ |
⑤ |
合计 |
50 |
1 |
为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:
;;;;;;; ; ;
(1)完成频率分布表,并画出频率分布直方图以及频率分布折线图;
(2)据上述图表,估计数据落在范围内的可能性是百分之几?
(3)数据小于11.20的可能性是百分之几?