为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).(1)求样本容量和频率分布直方图中的、的值;(2)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生参加“中国谜语大会”,求所抽取的名学生中至少有一人得分在内的概率.
在区间[0,1]上给定曲线,试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小。
设定义在R上的奇函数,且对任意实数,恒有,当时,。(1)求证:是周期函数。 (2)当时求的解析式。(3)计算……+。
求下列各函数的导数。(1) (2)
(本题满分14分).有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个边长为的小正方形,剰余部分围成一个长方体,该长方体的高是小正方形的边长.(1)请你求出这种切割、焊接而成的长方体容器的的容积V1(用表示);(2)经过设计(1)的方法,计算得到当时,Vl取最大值,为了材料浪费最少,工人师傅还实践出了其它焊接方法,请写出与(1)的焊接方法更佳(使材料浪费最少,容积比Vl大)的设计方案,并计算利用你的设计方案所得到的容器的容积。
(本题满分14分).如图所示,四棱锥P-ABCD的底面积ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面积ABCD,PA=.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD 于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)(Ⅲ)求二面角A-BE-P的大小.