(本题满分14分).如图所示,四棱锥P-ABCD的底面积ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面积ABCD,PA=.(Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD 于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)(Ⅲ)求二面角A-BE-P的大小.
已知函数. (Ⅰ)若函数在区间(其中)上存在极值,求实数的取值范围; (Ⅱ)如果当时,不等式恒成立,求实数的取值范围; (Ⅲ)求证:.
已知椭圆的离心率为, 直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程; (Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.
(本小题满分12分)已知三棱锥P—ABC中,PC⊥底面ABC,,,二面角P-AB-C为,D、F分别为AC、PC的中点,DE⊥AP于E. (Ⅰ)求证:AP⊥平面BDE; (Ⅱ)求平面BEF与平面BAC所成的锐二面角的余弦值.
(本小题满分12分)已知数列、的前n项和分别为、, 且满足,. (Ⅰ)求、的值,并证明数列是等比数列; (Ⅱ)试确定实数的值,使数列是等差数列.
(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率; (Ⅲ)该选手在选拔过程中回答过的问题个数记为,求随机变量的分布列和期望.