有一座大桥既是交通拥挤地段,又是事故多发地段。为了保证安全,交通部门规定,大桥上的车距y(米)与车速x(千米/小时)和车身长(米)的关系满足:,(1)求车距为2.66个车身长时的车速;(2)假定车身长为4米,应规定怎样的车速,才能使大桥上每小时的通过的车辆最多?(每小时通过的车辆数=)
设函数,其中为常数。 (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数有极值点,求的取值范围及的极值点。
如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值.
我校社团联即将举行一届象棋比赛,规则如下:两名选手比赛时,每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为,且各局比赛胜负互不影响. (Ⅰ)求比赛进行局结束,且乙比甲多得分的概率; (Ⅱ)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.
设△的三边为满足. (Ⅰ)求的值; (Ⅱ)求的取值范围.
已知△ABC的内角A、B、C所对的边分别为,且, cosB=. (1) 若b=4,求sinA的值; (2) 若△ABC的面积S△ABC=4,求b,c的值.