已知椭圆,直线l为圆的一条切线,且经过椭圆C的右焦点,直线l的倾斜角为,记椭圆C的离心率为e.(1)求e的值;(2)试判定原点关于l的对称点是否在椭圆上,并说明理由。
已知函数(x≠0),各项均为正数的数列中,,.(Ⅰ)求数列的通项公式;(Ⅱ)在数列中,对任意的正整数, 都成立,设为数列的前项和试比较与的大小.
若定义在上的函数同时满足以下条件:①在上是减函数,在上是增函数; ②是偶函数;③在处的切线与直线垂直. (Ⅰ)求函数的解析式;(Ⅱ)设,若存在,使,求实数的取值范围.
如图,在四棱锥中,四边形为平行四边形,为上一点,且.(Ⅰ)求证:;(Ⅱ)若点为线段的中点,求证:.
时维壬辰,序属仲春,值春耕播种时机,某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:
(Ⅰ)从4月10日至4月14日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于14”的概率;(Ⅱ)根据表中的数据可知发芽数y(颗)与温差x(oC)呈线性相关,请求出发芽数y关于温差x的线性回归方程.(参考公式:回归直线方程式,其中)
在中,角所对的边分别为,且成等差数列.(Ⅰ)求角的大小;(Ⅱ)若,试求周长的范围.