某射手击中目标的概率为0.8,每次射击的结果相互独立,现射击10次,问他最有可能射中几次?
(本小题满分12分)设命题是减函数,命题:关于 的不等式的解集为,如果“或”为真命题,“且”为假命题,求 实数的取值范围.
(本小题满分10分)国家有甲,乙两个射击队,若两个队共进行了8次热身赛, 各队的总成绩见下表:
分别求两个队总成绩的样本平均数和样本方差,根据计算结果,若选一个代表队参加奥运会比赛,你认为应该选哪一个队?
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界. (1)判断函数是否是有界函数,请写出详细判断过程; (2)试证明:设,若在上分别以为上界, 求证:函数在上以为上界; (3)若函数在上是以3为上界的有界函数, 求实数的取值范围.
已知,且是方程的两根. (1)求的值.(2)求的值.
化简