已知在的展开式中,第6项为常数项.(1)求n;(2)求展开式中所有的有理项.
设数列的各项都为正数,其前项和为,已知对任意,是和的等差中项.(Ⅰ)证明数列为等差数列,并求数列的通项公式;(Ⅱ)证明.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.(Ⅰ)求证:直线BD⊥平面PAC;(Ⅱ)求直线与平面所成角的正切值;(Ⅲ)已知M在线段PC上,且BM=DM=,CM=3,求二面角的余弦值.
某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.(Ⅰ)下表是年龄的频数分布表,求正整数的值;
(Ⅱ) 现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
已知函数(Ⅰ)求函数的最小正周期;(Ⅱ)求函数的单调递增区间.
在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风侵袭的时间有多少小时?