已知函数(1)当时,求曲线在点处的切线方程;(2)求函数的极值.
如图,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设点M为线段AB的中点,点N为线段CE的中点.求证:MN∥平面DAE.
证明:三角形ABC三个内角成等差数列的充要条件是有一个内角为.
已知直线l与直线的倾斜角相等,并且与两坐标轴围成的三角形面积等于24,求直线l的方程.
已知圆过点,且与圆:关于直线对称.(Ⅰ)求圆的方程;(Ⅱ)设为圆上的一个动点,求的最小值;(Ⅲ)过点作两条相异直线分别与圆相交于,且直线和直线的倾斜角互补,为坐标原点,试判断直线和是否平行?请说明理由.
已知定义域为的函数同时满足以下三个条件: ①对任意的,总有;②;③若且,则有成立,则称为“友谊函数”. (Ⅰ)若已知为“友谊函数”,求的值; (Ⅱ)函数在区间上是否为“友谊函数”?并给出理由; (Ⅲ)已知为“友谊函数”,且 ,求证:.