(本小题满分6分)已知函数(1)写出函数的周期;(2)将函数图像上所有的点向右平移个单位,得到函数的图像,写出函数的表达式,并判断函数的奇偶性.
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),曲线的极坐标方程为.(Ⅰ)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程;(Ⅱ)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由.
(本小题满分10分)选修4-1:几何证明选讲如图,已知是⊙的直径,直线与⊙相切于点,平分.(Ⅰ)求证:;(Ⅱ)若,求的长.
(本题分12分) 定义.(Ⅰ)求曲线与直线垂直的切线方程;(Ⅱ)若存在实数使曲线在点处的切线斜率为,且,求实数的取值范围.
(本题分12分)如图,斜率为1的直线过抛物线的焦点,与抛物线交于两点A、B, 将直线按向量平移得到直线,为上的动点,为抛物线弧上的动点.(Ⅰ) 若 ,求抛物线方程.(Ⅱ)求的最大值.(Ⅲ)求的最小值.
(本题分12分)如图,在长方体中,,为中点.(Ⅰ)求证:;(Ⅱ)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.(Ⅲ)若二面角的大小为,求的长.