从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为,椭圆的右焦点为,过作一条垂直于轴的直线与椭圆相交于,若线段的长为。 (1)求椭圆的方程; (2)设是直线上的点,直线与椭圆分别交于点,求证:直线必过轴上的一定点,并求出此定点的坐标;
已知定义在上的函数,其中为大于零的常数. (Ⅰ)当时,令, 求证:当时,(为自然对数的底数); (Ⅱ)若函数,在处取得最大值,求的取值范围
已知函数(x≠0)各项均为正数的数列{an}中a1=1,,。(1)求数列{an}的通项公式;(2)在数列{bn}中,对任意的正整数n,bn·都成立,设Sn为数列{bn}的前n项和试比较Sn与的大小。
下面一组图形为三棱锥P-ABC的底面与三个侧面.已知AB⊥BC,PA⊥AB,PA⊥AC. (1)在三棱锥P-ABC中,求证:平面ABC⊥平面PAB; (2)在三棱锥P-ABC中,M是PA的中点,且PA=BC=3,AB=4,求三棱锥P-MBC的体积.
近年来,我国机动车拥有量呈现快速增加的趋势,可与之配套的基础设施建设速度相对迟缓,交通拥堵问题已经成为制约城市发展的重要因素,为了解某市的交通状况,现对其6条道路进行评估,得分分别为5、6、7、8、9、10规定评估的平均得分与全市的总体交通状况等级如下表:
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级。 (2)用简单随机抽样方法从6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率