从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)
(本小题满分12分) 已知甲船正在大海上航行。当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:)。 (1) 试问乙船航行速度的大小; (2) 试问乙船航行的方向(试用方位角表示,譬如北偏东…度)。
(本小题满分12分) 已知各项均为正数的数列中,是数列的前项和,对任意,有 (1)求常数的值; (2)求数列的通项公式; (3)记,求数列的前项和。
(本小题满分12分) 在直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间。 (1)为使物体落在D内,求a的取值范围; (2)若物体运动时又经过点P(2,8.1),问它能否落在D内?并说明理由。
(本小题满分12分) 已知函数。 (1)若,求的最大值和最小值; (2)若,求的值。
(本小题满分13分) 设函数。 (1)求的单调区间; (2)若当时,(其中)不等式恒成立,求实数的取值范围; (3)试讨论关于的方程:在区间上的根的个数。