(本小题满分l2分)设椭圆的焦点分别为、,直线:交轴于点,且.(1)试求椭圆的方程;(2)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),试求四边形面积的最大值和最小值.
如图,在直三棱柱中,,分别是棱上的点(点 不同于点),且为的中点. 求证:(1)平面平面; (2)直线平面.
如图所示,在四棱锥中,平面,∥,,是中点,是上的点,且,为中边上的高.(1)证明:平面;(2)若,,,求三棱锥的体积;(3)证明:平面.
如图,矩形所在的平面与直角梯形所在的平面互相垂直,∥,.(1)求证:平面∥平面;(2)若,求证.
如图,直三棱柱 中,,,,点分别为和的中点. (1)证明:∥平面; (2)求三棱锥的体积.
如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.(1)若是的中点,求证://平面; (2)若,求证:;(3)在(2)的条件下,若,,,求四棱锥的体积.