(本小题满分10分) 从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 |
8 |
9 |
7 |
9 |
7 |
6 |
10 |
10 |
8 |
6 |
乙 |
10 |
9 |
8 |
6 |
8 |
7 |
9 |
7 |
8 |
8 |
(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
甲 |
27 |
38 |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
(1)分别求甲、乙两运动员最大速度
的平均数,及方差,;
(2)根据(1)所得数据阐明:谁参加这项重 大比赛更合适.
(本小题满分12分)对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下
甲 |
60 |
80 |
70 |
90 |
70 |
乙 |
80 |
60 |
70 |
80 |
75 |
问:甲、乙两人谁的平均成绩高?谁的各门功课发展较平衡?
(本小题满分12分)某单位对三个车间的人数统计情况如下表:用分层抽样的方法从三个车间抽取30人,其中三车间有12人.
|
一车间 |
二车间 |
三车间 |
男职工 |
200 |
100 |
250 |
女职工 |
600 |
550 |
(Ⅰ)求的值;
(Ⅱ)为了考察职工加班情况,从编号000~199中的一车间男职工中,用系统抽样法先后抽取5人的全年加班天数分别为75,79,82,73,81.已知73对应的编号为145,75对应的编号是多少?并求这五个人加班天数的方差.
(本小题满分12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
(本小题满分8分)从某校高一年级800名学生中随机抽取100名测量身高,测量后发现被抽取的学生身高全部介于155厘米和195厘米之间,将测量结果分为八组:第一组,第二组,……,第八组,得到频率分布直方图如右.
(Ⅰ)计算第七组[185,190)的样本数;并估计这个高一年级800名学生中身高在170厘米以下的人数;
(Ⅱ) 求出这100名学生身高的中位数、平均数.
甲、乙两同学的6次考试成绩分别为:
甲 |
||||||
乙 |
(Ⅰ)画出甲、乙两同学6次考试成绩的茎叶图;
(Ⅱ)计算甲、乙两同学考试成绩的方差,并对甲、乙两同学的考试成绩做出合理评价.
(本小题满分12分)某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图.
(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数和中位数.
某工厂36名工人年龄数据如图:
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值
和方差
;
(3)36名工人中年龄在
﹣
和
+
之间有多少人?所占百分比是多少(精确到
)?
某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
(1)求直方图中
的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的
方法抽取 户居民,则月平均用电量在
的用户中应抽取多少户?
为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下:
规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。
(Ⅰ)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;
(Ⅱ)现从乙厂抽出的非优等品中随机抽取两件,求至少抽到一件该元素含量为10毫克或13毫克的产品的概率。
(本小题满分12分)下图是某市今年1月份前30天空气质量指数(AQI)的趋势图.
(1)根据该图数据在答题卷中完成频率分布表,并在图中补全这些数据的频率分布直方图;
(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月(按30天计)某一天
到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?
(本小题满分12分)为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下:
规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。
(1)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;
(2)从乙厂抽出上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数的分布列及数学期望。
(本小题满分13分)从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如下茎叶图.已知甲班样本成绩的中位数为13, 乙班样本成绩的平均数为16.
(1)求的值;
(2)试估计甲、乙两班在该项测试中整体水平的高低(只需写出结论);
(3)从两组样本成绩中分别去掉一个最低分和一个最高分,再从两组
剩余成绩中分别随机选取一个成绩,求这两个成绩的和的分布列及数学期望.
(注:方差,其中为,, ,的平均数.)