某城市 100 户居民的月平均用电量(单位:度),以 [ 160 , 180 ) , [ 180 , 200 ) , [ 200 , 220 ) , [ 220 , 240 ) , [ 240 , 260 ) , [ 260 , 280 ) , 280 , 300 分组的频率分布直方图如图.
(1)求直方图中 x 的值; (2)求月平均用电量的众数和中位数; (3)在月平均用电量为 [ 220 , 240 ) , [ 240 , 260 ) , [ 260 , 280 ) , 280 , 300 的四组用户中,用分层抽样的 方法抽取 户居民,则月平均用电量在 [ 220 , 240 ) 的用户中应抽取多少户?
(本小题满分12分)等差数列中,,公差是自然数,等比数列中,(Ⅰ)试找出一个的值,使的所有项都是中的项;再找出一个的值,使的项不都是中的项(不必证明);(Ⅱ)判断时,是否所有的项都是中的项,并证明你的结论;(Ⅲ)探索当且仅当取怎样的自然数时,的所有项都是中的项,并说明理由.
(本小题满分12分)设数列、、满足:,(n=1,2,3,…),证明:为等差数列的充分必要条件是为等差数列且(n=1,2,3,…)
(本小题满分12分)数列{an}的前n项和记为Sn,(1)求{an}的通项公式; (2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn
(本小题满分12分)已知点分别是椭圆长轴的左、右端点,点是椭圆的右焦点.点在椭圆上,且位于轴的上方,.(1)求点的坐标; (2)设椭圆长轴上的一点, 到直线的距离等于,求椭圆上的点到点的距离的最小值.
(本小题满分14分)已知数列{}中,(n≥2,), (1)若,数列满足(),求证数列{}是等差数列; (2)若,求数列{}中的最大项与最小项,并说明理由; (3)(理做文不做)若,试证明:.