某城市 100 户居民的月平均用电量(单位:度),以 [ 160 , 180 ) , [ 180 , 200 ) , [ 200 , 220 ) , [ 220 , 240 ) , [ 240 , 260 ) , [ 260 , 280 ) , 280 , 300 分组的频率分布直方图如图.
(1)求直方图中 x 的值; (2)求月平均用电量的众数和中位数; (3)在月平均用电量为 [ 220 , 240 ) , [ 240 , 260 ) , [ 260 , 280 ) , 280 , 300 的四组用户中,用分层抽样的 方法抽取 户居民,则月平均用电量在 [ 220 , 240 ) 的用户中应抽取多少户?
设椭圆=1的焦点为F1、F2,P是椭圆上任意一点,一条斜率为的直线交椭圆于A、B两点,如果当a变化时,总可同时满足:①∠F1PF2的最大值为;②直线l:ax+y+1=0平分线段AB.求a的取值范围.
以椭圆+y2=1(a>1)短轴的一个端点B(0,1)为直角顶点作椭圆的内接等腰直角三角形,问这样的直角三角形是否存在?如果存在,请说明理由,并判断最多能作出几个这样的三角形;如果不存在,请说明理由.
已知椭圆中心在原点,焦点在横轴上,焦距为4,且和直线3x+2y-16=0相切,求椭圆方程.
给定四条曲线:①x2+y2=;②+=1;③x2+=1;④+y2=1.其中与直线x+y-5=0仅有一个交点的曲线是( )
设椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求椭圆离心率的取值范围.