已知锐角中内角、、所对边的边长分别为、、,满足,且.(Ⅰ)求角的值;(Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.
.(本小题满分15分)已知函数(Ⅰ)若对任意的恒成立,求实数的取值范围;(Ⅱ)当时,设函数,若,求证
(本小题满分15分).已知、分别为椭圆:的上、下焦点,其中也是抛物线:的焦点,点是与在第二象限的交点,且。(Ⅰ)求椭圆的方程;(Ⅱ)已知点P(1,3)和圆:,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:,(且)。求证:点Q总在某定直线上。
(本小题满分14分)在长方体中,点是上的动点,点为的中点. (Ⅰ)当点在何处时,直线//平面,并证明你的结论;(Ⅱ)在(Ⅰ)成立的条件下,求二面角 的大小.
(本小题满分14分)已知各项均为正数的数列{an}前n项和为Sn,(p – 1)Sn = p2 – an,n ∈N*,p > 0且p≠1,数列{bn}满足bn = 2logpan.(Ⅰ)若p =,设数列的前n项和为Tn,求证:0 < Tn≤4;(Ⅱ)是否存在自然数M,使得当n > M时,an > 1恒成立?若存在,求出相应的M;若不存在,请说明理由.
(本小题满分14分)在中,角所对的边分别为,向量,且.(Ⅰ)求的值; (Ⅱ)若的面积为,求.