(本小题满分14分)已知函数 .(Ⅰ)讨论函数的单调性;(Ⅱ)若,数列满足.(1)若首项,证明数列为递增数列;(2)若首项为正整数,且数列为递增数列,求首项的最小值.
(本小题满分14分)如图,平面平面,其中为正方形,为直角梯形,,,.(1)求证:平面;(2)求二面角的余弦值大小.
(本小题满分12分)甲、乙两人进行五局三胜制羽毛球决赛,除第五局两人获胜的机会相等外,其余各局甲获胜的概率都是,记为比赛的局数,每局比赛结果相互独立.(1)试求甲获胜的概率,乙获胜的概率;(2)求的分布列及数学期望值.
(本小题满分12分)已知函数.(1)求的值;(2)若中,,,求.
(本小题满分14分)定义在的奇函数有极小值为.(1)求的解析式; (2)若曲线有三条不同的切线,,相交于点,求实数的取值范围.
(本小题满分14分)已知直线经过椭圆:的右焦点和上顶点.(1)求椭圆的标准方程;(2)设直线与椭圆交于、,点关于轴的对称点(与不重合),则直线与轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.