(本小题满分14分)如图,在四棱柱中,底面,,,且,. 点E在棱AB上,平面与棱相交于点F.
(Ⅰ)求证:∥平面;
(Ⅱ)求证: 平面;
(Ⅲ)写出三棱锥体积的取值范围. (结论不要求证明)
(本小题满分14分)如图,在四棱锥中,底面为平行四边形,,为的中点,底面.
(1)求证:平面;
(2)在线段上是否存在一点,使得平面?若存在,写出证明过程;若不存在,请说明理由.
(本小题12分)如图,已知平面,,是正三角形,AD=DEAB,且F是CD的中点.
(1)求证:AF//平面BCE;
(2)求证:平面BCE⊥平面CDE.
(本小题满分12分)如图1,在Rt中,,.D、E分别是上的点,且,将沿折起到的位置,使,如图2.
(Ⅰ)求证:平面平面;
(Ⅱ)若,求与平面所成角的余弦值;
(Ⅲ)当点在何处时,的长度最小,并求出最小值.
(本小题满分14分)直棱柱中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,.
(1)求证:AC⊥平面BB1C1C;
(2)在A1B1上是否存一点P,使得DP与平面BCB1与平面ACB1都平行?证明你的结论.
(本小题满分14分)直棱柱中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,.
(1)求证:AC⊥平面BB1C1C;
(2)在A1B1上是否存一点P,使得DP与平面BCB1与平面ACB1都平行?证明你的结论.
如图,在中,°,,,,分别是,上的点,且,,将沿折起到的位置,使,如图.
(Ⅰ)求证:平面;
(Ⅱ)若是的中点,求与平面所成角的大小;
(Ⅲ)点是线段的靠近点的三等分点,点是线段上的点,直线过点且垂直于平面,求点到直线的距离的最小值.
(本小题满分12分)如图,四棱锥中,平面,,,,为的中点.
(Ⅰ)证明:;
(Ⅱ)若二面角为,求直线与平面所成角的正切值.
(Ⅲ)若,求平面与平面PAB所成的锐二面角的余弦值
如图,中,是的中点,,.将沿折起,使点与图中点重合.
(Ⅰ)求证:;
(Ⅱ)当三棱锥的体积取最大时,求二面角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试问在线段上是否存在一点,使与平面所成的角的正弦值为?证明你的结论.
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.
(1)求证:平面;
(2)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.
如图,在三棱锥中,底面,,为的中点, 为的中点,,.
(1)求证:平面;
(2)求与平面成角的正弦值;
(3)设点在线段上,且,平面,求实数的值.