(本小题满分14分)如图,在三棱锥中,平面平面,,、分别为、的中点.
(1)求证:∥平面;
(2)求证:.
(本题满分12分)本题共2小题,第(1)小题6分,第(2)小题6分.
如图所示,在长方体中,,,,为棱上一点.
(1)若,求异面直线和所成角的正切值;
(2)若,求证平面.
如图,在直三棱柱中,,是棱上的一点,是的延长线与的延长线的交点,且∥平面。
(1)求证:;
(2)求二面角的平面角的余弦值;
(3)求点到平面的距离.
设、、是三个不同的平面,、、是三条不同的直线,则的一个充分条件为 .
①;
②;
③;
④.
(本小题满分12分)
如图,ABCD为梯形,平面ABCD,AB//CD,,E为BC中点
(I)求证:平面平面PDE;
(II)线段PC上是否存在一点F,使PA//平面BDF?若有,请找出具体位置,并进行证明;若无,请分析说明理由.
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图(1),在三角形ABC中,,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.
如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.
(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.
如图是棱长为的正方体的平面展开图,则在原正方体中,
①平面;
②平面;
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____ ____。 (写出所有正确命题的序号)