高中数学

如图,在三棱锥中,平面平面为等边三角形,分别为的中点;

(1)求证: ;
(2)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱锥中,是该三棱锥外部(不含表面)的一点,给出下列四个命题,
① 存在无数个点,使
② 存在唯一点,使四面体为正三棱锥;
③ 存在无数个点,使
④ 存在唯一点,使四面体有三个面为直角三角形.
其中正确命题的序号是       .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥,底面ABCD为矩形,底面,点是棱的中点.

(Ⅰ)证明:平面
(Ⅱ)若,求二面角的平面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形 A B C D 为菱形, A B C =120°, E , F 是平面 A B C D 同一侧的两点, B E ⊥平面 A B C D D E ⊥平面 A B C D B E = 2 D E A E E C .
image.png

(Ⅰ)证明:平面 A E C ⊥平面 A F C
(Ⅱ)求直线 A E 与直线 C F 所成角的余弦值.

来源:2015年全国普通高等学校招生统一考试理科数学
  • 更新:2022-08-29
  • 题型:未知
  • 难度:未知

如图,在棱长为1的正方体中,点分别是的中点.

(1)求证:
(2)求所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个正方体的平面展开图及该正方体的直观图的示意图如图所示:
image.png

(Ⅰ)请按字母 F , G , H 标记在正方体相应地顶点处(不需要说明理由)
(Ⅱ)判断平面 B E G 与平面 A C H 的位置关系,并说明你的结论.
(Ⅲ)证明:直线 D F 平面 B E G .

来源:2015年全国普通高等学校招生统一考试文科数学
  • 更新:2022-08-30
  • 题型:未知
  • 难度:未知

四棱锥P﹣ABCD中,底面ABCD是边长为8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD.

(1)求四棱锥P﹣ABCD的体积;
(2)求证:AD⊥PB.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是边长为2的菱形,.已知

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(1),在三角形ABC中,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.

(1)求证:平面CMN;
(2)求点M到平面CAN的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面,且,点的中点,且交于点

(1)求证:平面
(2)当时,求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在长方体中,,点是线段中点.

(1)求证:
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.

(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是棱长为的正方体的平面展开图,则在原正方体中,

平面;   
平面
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____  ____。 (写出所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题