一个正方体的平面展开图及该正方体的直观图的示意图如图所示:
(Ⅰ)请按字母 F , G , H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面 B E G 与平面 A C H 的位置关系,并说明你的结论. (Ⅲ)证明:直线 D F ⊥ 平面 B E G .
(本小题满分12分)已知函数.(Ⅰ)若函数在,处取得极值,求,的值;(Ⅱ)若,函数在上是单调函数,求的取值范围.
(本小题满分12分)抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且。 (1) 求抛物线方程;(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
(本小题满分12分)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.(1)证明:平面PBE平面PAB;(2)求PC与平面PAB所成角的余弦值。
(本小题满分12分)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:.(1)求图中x的值;(2)从成绩不低于80分的学生中按分层抽样抽取4人,选其中2人为数学课代表,求这两个人的数学成绩不在同一分数段的概率。
(本小题满分12分)在数列中,,并且对于任意n∈N*,都有.(1)证明数列为等差数列,并求的通项公式;(2)设数列的前n项和为,求使得的最小正整数.