高中数学

为两条不同的直线,为两个不同的平面,下列命题中,正确的是(  )

A.若所成的角相等,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于直线m、n和平面α、β,能得出α⊥β的一个条件是 ( )

A.m⊥n,m∥α,n∥β
B.m⊥n,α∩β=m,n⊂α
C.m∥n,n⊥β,m⊂α
D.m∥n,m⊥α,n⊥β
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是两条不同的直线,是一个平面,则下列命题正确的是(  )

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

表示两条不同的直线,表示两个不同的平面,则下列命题不正确的是( )

A.,则//
B.,则
C.,则
D.,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设m,n是两条不同的直线,是三个不同的平面,给出下列命题,正确的是(   )

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在四棱锥中,底面为矩形,侧棱底面,且,过棱的中点,作于点,连接

(Ⅰ)证明:
(Ⅱ)求异面直线所成角的余弦值及二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD的底面ABCD为正方形,PD⊥底面ABCD,PD=DC, 点E是PC的中点,作交PB于点F.

(1)求证:PB⊥平面EFD; 
(2)求二面角C-PB-D的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直线l1:ax-y-2=0和直线l2:(a+2)x-y+1=0互相垂直,则实数a的值为( )

A.-1 B.0 C.1 D.2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知正三棱锥P-ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为__________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是两条不同直线,是一个平面,则下列说法正确的是(  )

A.若.b,则
B.若,b,则
C.若,则
D.若,b⊥,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若两个平面互相垂直,则下列命题中正确的是(  )

A.一个平面内的已知直线必垂直于另一个平面内的任意一条直线;
B.一个平面内的已知直线必垂直于另一个平面内的无数条直线;
C.一个平面内的任意一条直线必垂直于另一个平面;
D.过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有三个命题:
①垂直于同一个平面的两条直线平行;
②∀x∈R,x4>x2
③命题“所有能被2整除的整数都是偶数”的否定是:所有能被2整除的整数都不是偶数.
其中正确命题的个数为(  )

A.0 B.1 C.2 D.3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体.
以上结论其中正确的是________(写出所有正确结论的编号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题