(本小题满分12分)设
为定义在R上的偶函数,当
时,
.
(1)求函数
在R上的解析式;
(2)在直角坐标系中画出函数
的图象;
(3)若方程
-k=0有四个解,求实数k的取值范围.
(本小题满分12分)已知函数
,其中
为常数,且
(1)若
,求函数
的表达式;
(2)在(1)的条件下,设函数
,若
在区间
上是单调函数,求实数
的取值范围;
(3)是否存在实数
使得函数
在
上的最大值是4?若存在,求出
的值;若不存在,请说明理由.
函数f(x)是R上的偶函数,且当x>0时,函数的解析式为
.
(1)求f(-1)的值;
(2)求当x<0时,函数的解析式;
(3)用定义证明f(x)在(0,+∞)上是减函数.
设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.
(1)求f(x)的解析式;
(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.
某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.
(1)分别写出用x表示y和S的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?
(本小题满分12分)(1)函数f(x)是R上的偶函数,且当x>0时,函数的解析式为f(x)=
-1.求当x<0时,函数的解析式.
(2)若
满足关系式
,求
.
设函数 ,其中 ,已知 .
(Ⅰ)求 ;
(Ⅱ)将函数 的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移 个单位,得到函数 的图象,求 在 上的最小值.
根据条件求下列各函数的解析式:
(1)已知f(x)是二次函数,若f(0)=0,f(x+1)=f(x)+x+1,求f(x).
(2)已知
,求f(x)
(3)若f(x)满足
,求f(x).
已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式.
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围.
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.