高中数学

已知函数f(x)=ln(x+1)-x2x.
(1)若关于x的方程f(x)=-xb在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(2)证明:对任意的正整数n,不等式2++…+ >ln(n+1)都成立.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设椭圆M=1(a>)的右焦点为F1,直线lxx轴交于点A,若=2 (其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆Nx2+(y-2)2=1的任意一条直径(EF为直径的两个端点),求·的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,已知圆x2y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点AB.
(1)求圆Q的面积;
(2)求k的取值范围;
(3)是否存在常数k,使得向量共线?如果存在,求k的值;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列{an}满足a1a(a>0,a∈N*),a1a2+…+anpan+1=0(p≠0,p≠-1,n∈N*).
(1)求数列{an}的通项公式an
(2)若对每一个正整数k,若将ak+1ak+2ak+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为dk.①求p的值及对应的数列{dk}.
②记Sk为数列{dk}的前k项和,问是否存在a,使得Sk<30对任意正整数k恒成立?若存在,求出a的最大值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,其中.
(1)当时,求不等式的解集;
(2)若不等式的解集为 ,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

数列
(1)求b1、b2、b3、b4的值;
(2)求数列的通项公式及数列的前n项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知椭圆的离心率是分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点轴上位于右侧的一点,且满足

(1)求椭圆的方程以及点的坐标;
(2)过点轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点.求证:以线段为直径的圆恒过定点,并求出定点的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在中,,点在边上,设,过点,作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求证:平面
(2)是否存在正实数,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数f(x),g(x)的定义域分别为M,N,且M是N真子集,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=log2x,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.
 
(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1C2交点的极坐标(ρ≥0,0≤θ<2π).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,点P(0,-1)是椭圆C1=1(a>b>0)的一个顶点,C1的长轴是圆C2x2y2=4的直径.l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若两个椭圆的离心率相等,则称它们为“相似椭圆”.如图,在直角坐标系xOy中,已知椭圆C1=1,A1A2分别为椭圆C1的左、右顶点.椭圆C2以线段A1A2为短轴且与椭圆C1为“相似椭圆”.
 
(1)求椭圆C2的方程;
(2)设P为椭圆C2上异于A1A2的任意一点,过PPQx轴,垂足为Q,线段PQ交椭圆C1于点H.求证:H为△PA1A2的垂心.(垂心为三角形三条高的交点)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆C=1(ab>0)上任一点P到两个焦点的距离的和为2P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1y1),B(x2y2).
(1)若 (O为坐标原点),求|y1y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QAQB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,椭圆=1(ab>0)的上,下两个顶点为AB,直线ly=-2,点P是椭圆上异于点AB的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1BP所在的直线的斜率为k2.若椭圆的离心率为,且过点A(0,1).

(1)求k1·k2的值;
(2)求MN的最小值;
(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学试题