高中数学
代数
集合
集合的概念与表示
集合的基本关系
集合的基本运算
集合的划分
常用逻辑用语
命题及其关系
充分条件、必要条件、充要条件
逻辑联结词“或”、“且”、“非”
全称量词与存在量词
函数
函数的概念
函数的基本性质
一次函数的性质与图象
二次函数的性质与图象
基本初等函数
指数函数
对数函数
幂函数
函数的应用
函数的零点与方程的根
函数与方程的综合运用
函数模型及其应用
导数及其应用
导数的概念及其意义
导数的运算
定积分、微积分
导数在研究函数中的应用
不等式
不等关系与不等式
一元二次不等式
二元一次不等式
基本不等式及其应用
其他不等式
数列与差分
数列的概念及表示法
等差数列
等比数列
数列综合
数列差分
平面向量
向量的概念
平面向量的线性运算
平面向量的基本定理
平面向量的坐标
平面向量的数量积
平面向量的应用
数系的扩充与复数
复数的概念
复数的运算
复数的模
三角函数
任意角和弧度制
三角函数的概念
三角函数的性质
诱导公式
同角三角函数间的基本关系
三角函数的恒等变换
正弦函数
余弦函数
正切函数
复合三角函数
三角函数的应用
解三角形
概率与统计
统计与统计案例
随机抽样
统计图表
用样本估计总体
变量间的相关关系
一元线性回归模型及其应用
独立性检验
概率
随机事件
概率及其性质
独立事件与条件概率
离散型随机变量及其分布列
连续型随机变量
正态分布曲线
概率综合
计数原理
分类加法,分步乘法
计数原理的应用
排列与组合
二项式定理
推理与证明
推理与证明
合情推理和演绎推理
平面解析几何
直线与方程
直线的几何要素
直线的方程
直线方程的应用
圆与方程
圆的方程
圆的方程的应用
空间直角坐标系
圆锥曲线与方程
椭圆
抛物线
双曲线
圆锥曲线综合
立体几何
空间几何体
立体图形的表面积与体积
立体图形的结构特征
立体图形的直观图
基本事实、公理
直线与直线的位置关系
直线与平面的位置关系
平面与平面的位置关系
空间向量与立体几何
空间向量及其运算
空间向量基本定理及坐标表示
空间向量的应用
知识延伸(选修)
算法与框图
算法及其特点
框图及其结构
几何证明选讲
三角形
圆与球的性质
圆锥曲线
矩阵与变换
线性变换与二阶矩阵
复合变换与二阶矩阵的乘法
逆变换与逆矩阵
高阶矩阵与特征向量
坐标系与参数方程
坐标系
参数方程
不等式选讲
绝对值不等式
不等式的证明
柯西不等式与排序不等式
用数学归纳法证明不等式
初等数论初步
二元一次不定方程的特解
误差估计
平行线法
正交试验设计方法
原根与指数
mod的原根存在性
二次剩余
不定方程和方程组
欧拉定理
数学史选讲
平面解析几何的产生──数与形的结合
微积分的产生──划时代的成就
随机思想的发展
代数拓展
三角不等式
一阶、二阶线性常系数递归数列的通项公式
第二数学归纳法
柯西不等式
排序不等式及应用
多项式的插值公式
函数迭代
几何拓展
西姆松定理
几何不等式
几何中的变换:对称、平移、旋转
面积、复数、向量、解析几何方法的应用
平面凸集、凸包及应用
简单的等周问题
直线束及其应用
三角形的面积公式
多面角及多面角的性质
三面角、直三面角的基本性质
截面及其作法
表面展开图
组合几何

已知向量a,b的夹角为60°, | a | = 2 | b | = 1 ,则 | a + 2 b | = _________ .

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2022-08-02
  • 题型:填空题
  • 难度:中等

几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了"解数学题获取软件激活码"的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是2 0,接下来的两项是2 0,2 1,再接下来的三项是2 0,2 1,2 2,依此类推.求满足如下条件的&最小整数 N N > 100 且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )

A.440B.330C.220D.110

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

xyz 为正数,且 2 x = 3 y = 5 z ,则(  )

A. 2 x < 3 y < 5 z B. 5 z < 2 x < 3 y C. 3 y < 5 z < 2 x D. 3 y < 2 x < 5 z

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

已知F为抛物线 C y 2 = 4 x 的焦点,过F作两条互相垂直的直线l 1,l 2,直线l 1与C交于A、B两点,直线l 2与C交于D、E两点,则 | AB | + | DE | 的最小值为( )

A.16B.14C.12D.10

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

已知曲线 C 1 y = cos x C 2 y = sin ( 2 x + 2 π 3 ) ,则下面结论正确的是( )

A.把 C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 π 6 个单位长度,得到曲线 C 2

B.把 C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 π 12 个单位长度,得到曲线 C 2

C.把 C 1上各点的横坐标缩短到原来的 1 2 倍,纵坐标不变,再把得到的曲线向右平移 π 6 个单位长度,得到曲线 C 2

D.把 C 1上各点的横坐标缩短到原来的 1 2 倍,纵坐标不变,再把得到的曲线向左平移 π 12 个单位长度,得到曲线 C 2

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

右面程序框图是为了求出满足 3 n - 2 n > 1000 的最小偶数 n ,那么在 两个空白框中,可以分别填入(   )

image.png

A. A > 1 000 n = n + 1

B. A > 1 000 n = n + 2

C. A 1 000 n = n + 1

D. A 1 000 n = n + 2

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2022-08-02
  • 题型:选择题
  • 难度:中等

某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(   )

image.png

A.

10

B.

12

C.

14

D.

16

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2022-08-02
  • 题型:选择题
  • 难度:中等

( 1 + 1 x 2 ) ( 1 + x ) 6 展开式中 x 2 的系数为(  )

A.15B.20C.30D.35

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

函数 f ( x ) ( - , + ) 单调递减,且为奇函数.若 f ( 1 ) = - 1 ,则满足 - 1 f ( x - 2 ) 1 x 的取值范围是(    )

A. [ - 2 , 2 ] B. [ - 1 , 1 ] C. [ 0 , 4 ] D. [ 1 , 3 ]

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

S n 为等差数列 { a n } 的前 n 项和.若 a 4 + a 5 = 24 S 6 = 48 ,则 { a n } 的公差为(  )

A.1B.2C.4D.8

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

设有下面四个命题

p 1 :若复数 z 满足 1 z R ,则 z R

p 2 :若复数 z 满足 z 2 R ,则 z R

p 3 :若复数 z 1 , z 2 满足 z 1 z 2 R ,则 z 1 = z 2 ¯

p 4 :若复数 z R ,则 z ̄ R .

其中的真命题为(    )

A. p 1 , p 3 B. p 1 , p 4 C. p 2 , p 3 D. p 2 , p 4

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )

image.png

A.

1 4

B.

π 8

C.

1 2

D.

π 4

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2022-08-02
  • 题型:选择题
  • 难度:中等

已知集合 A = { x | x < 1 } B = { x | 3 x < 1 },则( )

A. A B = { x | x < 0 } B. A B = R

C. A B = { x | x > 1 } D. A B =

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2021-09-28
  • 题型:选择题
  • 难度:中等

设O为坐标原点,动点M在椭圆 C x 2 2 + y 2 = 1 上,过M做x轴的垂线,垂足为N,点P满足 NP = 2 NM .

(1) 求点 P的轨迹方程;

(2) 设点 Q在直线 x = - 3 上,且 OP PQ = 1 .证明:过点 P且垂直于 OQ 的直线 lC的左焦点 F.

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2021-09-28
  • 题型:解答题
  • 难度:中等

如图,四棱锥 P - ABCD 中,侧面 PAD 为等比三角形且垂直于底面 ABCD AB = BC = 1 2 AD , BAD = ABC = 9 0 o , E PD 的中点.

(1)证明:直线 CE / / 平面 PAB ;

(2)点 M在棱 PC上,且直线 BM与底面 ABCD所成锐角为 4 5 o ,求二面角 M - AB - D 的余弦值.

image.png

来源:2017年全国统一高考理科数学试卷(全国Ⅱ卷)已传
  • 更新:2022-08-02
  • 题型:解答题
  • 难度:中等

高中数学试题