统计表明:某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/每小时)的函数解析式可以表示为,已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大速度行驶时,从甲地到乙地耗油最少?最少为多少升?
已知是定义在上的奇函数,且,若,有恒成立.
(1)判断在上是增函数还是减函数,并证明你的结论;
(2)若对所有恒成立,求实数的取值范围。
在△ABC中,若,则△ABC是( )
A.有一内角为30°的直角三角形 | B.等腰直角三角形 |
C.有一内角为30°的等腰三角形 | D.等边三角形 |
已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点且不垂直于轴直线与椭圆相交于、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围.
如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,是棱上的点,,,.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)若为棱的中点,求异面直线与所成角的余弦值.