下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.
小明:如图1, 分别在射线OA,OB上截取 , 点C,E不重合 ; 分别作线段CE,DF的垂直平分线 , ,交点为P,垂足分别为点G,H; 作射线OP,射线即为 的平分线. 简述理由如下: 由作图知, , , ,所以 ≌ ,则 ,即射线OP是 的平分线. 小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2, 分别在射线OA,OB上截取 , 点C,E不重合 ; 连接DE,CF,交点为P; 作射线 射线OP即为 的平分线.
|
任务:
小明得出 ≌ 的依据是______ 填序号 .
小军作图得到的射线0P是 的平分线吗?请判断并说明理由.
如图3,已知 ,点E,F分别在射线OA,OB上,且 点C,D分别为射线OA,OB上的动点,且 ,连接DE,CF,交点为P,当 时,直接写出线段OC的长.
小华用一张直角三角形纸片玩折纸游戏,如图1,在 中, , , .第一步,在 边上找一点 ,将纸片沿 折叠,点 落在 处,如图2;第二步,将纸片沿 折叠,点 落在 处,如图3.当点 恰好落在原直角三角形纸片的边上时,线段 的长为 .
在一平面内,线段 ,线段 ,将这四条线段顺次首尾相接.把 固定,让 绕点 从 开始逆时针旋转角 到某一位置时, , 将会跟随出现到相应的位置.
论证:如图1,当 时,设 与 交于点 ,求证: ;
发现:当旋转角 时, 的度数可能是多少?
尝试:取线段 的中点 ,当点 与点 距离最大时,求点 到 的距离;
拓展:①如图2,设点 与 的距离为 ,若 的平分线所在直线交 于点 ,直接写出 的长(用含 的式子表示);
②当点 在 下方,且 与 垂直时,直接写出 的余弦值.
在四边形 中,对角线 平分 .
【探究发现】
(1)如图①,若 , .求证: ;
【拓展迁移】
(2)如图②,若 , .
①猜想 、 、 三条线段的数量关系,并说明理由;
②若 ,求四边形 的面积.
如图, 是以 为直径的 的切线,切点为 ,过点 作 ,交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在边长为2的正方形 中,若将 绕点 逆时针旋转 ,使点 落在点 的位置,连接 ,过点 作 ,交 的延长线于点 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, 为 的直径, 为 的弦,点 是 的中点,过点 作 的垂线,交 于点 ,交 于点 ,分别连接 , .
(1) 与 的数量关系是 ;
(2)求证: ;
(3)若 , ,求阴影部分图形的面积.
如图,在正六边形 中,连接对角线 , , , , , 与 交于点 , 与 交于点为 , 与 交于点 ,分别延长 , 于点 ,设 .有以下结论:
①
②
③ 的重心、内心及外心均是点
④四边形 绕点 逆时针旋转 与四边形 重合
则所有正确结论的序号是 .
如图,在 中, , 是 上的一点,以 为直径的 与 相切于点 ,连接 , .
(1)求证: 平分 ;
(2)若 ,求 的值.
如图,在四边形 中, , , , 交 于点 ,过点 作 ,垂足为 ,且 .
(1)求证:四边形 是菱形;
(2)若 ,求 的面积.
如图.在边长为6的正方形 中,点 , 分别在 , 上, 且 , ,垂足为 , 是对角线 的中点,连接 、则 的长为 .
如图, 是 的外接圆, 是 的直径, 是 延长线上一点,连接 , ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,在四边形 中, , , ,点 、 分别在线段 、 上,且 , , .
(1)求证: ;
(2)求证:以 为直径的圆与 相切;
(3)若 , ,求 的面积.