在一平面内,线段 AB = 20 ,线段 BC = CD = DA = 10 ,将这四条线段顺次首尾相接.把 AB 固定,让 AD 绕点 A 从 AB 开始逆时针旋转角 α ( α > 0 ° ) 到某一位置时, BC , CD 将会跟随出现到相应的位置.
论证:如图1,当 AD / / BC 时,设 AB 与 CD 交于点 O ,求证: AO = 10 ;
发现:当旋转角 α = 60 ° 时, ∠ ADC 的度数可能是多少?
尝试:取线段 CD 的中点 M ,当点 M 与点 B 距离最大时,求点 M 到 AB 的距离;
拓展:①如图2,设点 D 与 B 的距离为 d ,若 ∠ BCD 的平分线所在直线交 AB 于点 P ,直接写出 BP 的长(用含 d 的式子表示);
②当点 C 在 AB 下方,且 AD 与 CD 垂直时,直接写出 α 的余弦值.
(本题10分)准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点. (1)求证:四边形BFDE是平行四边形; (2)若四边形BFDE是菱形, AB=2,求菱形BFDE的面积.
(本题10分)用你发现的规律解答下列问题.┅┅ (1) 计算. (2)探究.(用含有的式子表示) (3)若 的值为,求的值.
(本题9分)为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(单位:分钟),他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完成的频数分布直方图.
36
根据图、表提供的信息,解答下列问题:
24
(2)求样本中“通话时长”不超过9分钟的频率;
(本题6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图并标好相应的字母: (1)以A点为旋转中心,将△ABC绕点A顺时针旋转得△AB1C1,画出△AB1C1. (2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
(本题6分)如图,在□ABCD中,点E,F是对角线BD上的两点,且BE=DF. 求证:(1)△ABE≌△CDF;(2)AE∥CF.