如图所示的网格由边长为1个单位长度的小正方形组成,点、、在直角坐标系中的坐标分别为,,,则内心的坐标为 .
设边长为 的等边三角形的高、内切圆的半径、外接圆的半径分别为 、 、 ,则下列结论不正确的是
A. |
|
B. |
|
C. |
|
D. |
|
(1)如图,已知线段和点,利用直尺和圆规作,使点是的内心(不写作法,保留作图痕迹);
(2)在所画的中,若,,,则的内切圆半径是 .
如图,点是的内心,的延长线与的外接圆交于点,与交于点,延长、相交于点,的平分线交于点.
(1)求证:;
(2)求证:;
(3)若,,求的长.
如图,点是的内心,的延长线和的外接圆相交于点,过作直线.
(1)求证:是的切线;
(2)若,,求优弧的长.
如图, 是 的直径, 、 是 (异于 、 上两点, 是 上一动点, 的角平分线交 于点 , 的平分线交 于点 .当点 从点 运动到点 时,则 、 两点的运动路径长的比是
A. |
|
B. |
|
C. |
|
D. |
|
如图, 内心为 ,连接 并延长交 的外接圆于 ,则线段 与 的关系是
A. |
|
B. |
|
C. |
|
D. |
不确定 |
如图, 是 的切线,切点为 , 是 的直径,连接 交 于 .过 点作 于点 ,交 于 ,连接 , .
(1)求证: 是 的切线;
(2)求证: 为 的内心;
(3)若 , ,求 的长.
如图,顶点为的抛物线与轴交于,两点,与轴交于点.
(1)求这条抛物线对应的函数表达式;
(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值.
如图,分别以边长为2的等边三角形的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知是的内切圆,则阴影部分面积为 .
如图,,点、分别在射线、上,,.
(1)用尺规在图中作一段劣弧,使得它在、两点分别与射线和相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段、围成的封闭图形的面积.
如图,等腰 的内切圆 与 , , 分别相切于点 , , ,且 , ,则 的长是
A. |
|
B. |
|
C. |
|
D. |
|