初中数学

如图,已知点 E F 分别在边 AB BC 上, ED / / BC EF / / AC BE = CF .求证: BD ΔABC 的角平分线.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

折纸的思考.

(操作体验)

用一张矩形纸片折等边三角形.

第一步,对折矩形纸片 ABCD ( AB > BC ) (图①),使 AB DC 重合,得到折痕 EF ,把纸片展平(图②).

第二步,如图③,再一次折叠纸片,使点 C 落在 EF 上的 P 处,并使折痕经过点 B ,得到折痕 BG ,折出 PB PC ,得到 ΔPBC

(1)说明 ΔPBC 是等边三角形.

(数学思考)

(2)如图④,小明画出了图③的矩形 ABCD 和等边三角形 PBC .他发现,在矩形 ABCD 中把 ΔPBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.

(3)已知矩形一边长为 3 cm ,另一边长为 acm ,对于每一个确定的 a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的 a 的取值范围.

(问题解决)

(4)用一张正方形铁片剪一个直角边长分别为 4 cm 1 cm 的直角三角形铁片,所需正方形铁片的边长的最小值为        cm

来源:2017年江苏省南京市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

有一张等腰三角形纸片, AB = AC = 5 BC = 3 ,小明将它沿虚线 PQ 剪开,得到 ΔAQP 和四边形 BCPQ 两张纸片(如图所示),且满足 BQP = B ,则下列五个数据 15 4 ,3, 16 5 ,2, 5 3 中可以作为线段 AQ 长的有     个.

来源:2016年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知 BD ΔABC 的角平分线,点 E F 分别在边 AB BC 上, ED / / BC EF / / AC .求证: BE = CF

来源:2016年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, AB = 3 BC = 4 M 是对角线 BD 上的动点,过点 M ME BC 于点 E ,连接 AM ,当 ΔADM 是等腰三角形时, ME 的长为 (    )

A. 3 2 B. 6 5 C. 3 2 3 5 D. 3 2 6 5

来源:2019年辽宁省锦州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 A ( 2 , 0 ) ,动点 P 在直线 y = 3 x 上,若 ΔAPO 为等腰三角形,则点 P 的坐标是  

来源:2018年辽宁省丹东市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图所示,在等腰 ΔABC 中, AB = AC A = 36 ° ,将 ΔABC 中的 A 沿 DE 向下翻折,使点 A 落在点 C 处.若 AE = 3 ,则 BC 的长是  

来源:2018年湖南省邵阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

已知抛物线 c 1 的顶点为 A ( 1 , 4 ) ,与 y 轴的交点为 D ( 0 , 3 )

(1)求 c 1 的解析式;

(2)若直线 l 1 : y = x + m c 1 仅有唯一的交点,求 m 的值;

(3)若抛物线 c 1 关于 y 轴对称的抛物线记作 c 2 ,平行于 x 轴的直线记作 l 2 : y = n .试结合图形回答:当 n 为何值时, l 2 c 1 c 2 共有:①两个交点;②三个交点;③四个交点;

(4)若 c 2 x 轴正半轴交点记作 B ,试在 x 轴上求点 P ,使 ΔPAB 为等腰三角形.

来源:2017年湖南省张家界市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, ABC = 120 ° AB = 10 cm ,点 P 是这个菱形内部或边上的一点.若以 P B C 为顶点的三角形是等腰三角形,则 P A ( P A 两点不重合)两点间的最短距离为   cm

来源:2017年湖南省怀化市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段 CD ΔABC 的“和谐分割线”, ΔACD 为等腰三角形, ΔCBD ΔABC 相似, A = 46 ° ,则 ACB 的度数为  

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,已知在 ΔABC 中, BC 边上的高 AD AC 边上的高 BE 交于点 F ,且 BAC = 45 ° BD = 6 CD = 4 ,则 ΔABC 的面积为  

来源:2018年贵州省黔东南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

阅读下面的例题及点拨,并解决问题:

例题:如图①,在等边 ΔABC 中, M BC 边上一点(不含端点 B C ) N ΔABC 的外角 ACH 的平分线上一点,且 AM = MN .求证: AMN = 60 °

点拨:如图②,作 CBE = 60 ° BE NC 的延长线相交于点 E ,得等边 ΔBEC ,连接 EM .易证: ΔABM ΔEBM ( SAS ) ,可得 AM = EM 1 = 2 ;又 AM = MN ,则 EM = MN ,可得 3 = 4 ;由 3 + 1 = 4 + 5 = 60 ° ,进一步可得 1 = 2 = 5 ,又因为 2 + 6 = 120 ° ,所以 5 + 6 = 120 ° ,即: AMN = 60 °

问题:如图③,在正方形 A 1 B 1 C 1 D 1 中, M 1 B 1 C 1 边上一点(不含端点 B 1 C 1 ) N 1 是正方形 A 1 B 1 C 1 D 1 的外角 D 1 C 1 H 1 的平分线上一点,且 A 1 M 1 = M 1 N 1 .求证: A 1 M 1 N 1 = 90 °

来源:2019年甘肃省临夏州中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, ΔABC AB = AC = 4 C = 72 ° D AB 中点,点 E AC 上, DE AB ,则 cos A 的值为 (    )

A. 5 1 2 B. 5 1 4 C. 5 + 1 4 D. 5 + 1 2

来源:2016年四川省绵阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 是平行四边形,延长 BA 至点 E ,使 AE + CD = AD .连接 CE ,求证: CE 平分 BCD

来源:2016年四川省巴中市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BD 平分 ABC ED / / BC ,已知 AB = 3 AD = 1 ,则 ΔAED 的周长为 (    )

A.2B.3C.4D.5

来源:2016年四川省阿坝州中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的判定与性质试题