初中数学

已知点 O 是线段 AB 的中点,点 P 是直线 l 上的任意一点,分别过点 A 和点 B 作直线 l 的垂线,垂足分别为点 C 和点 D .我们定义垂足与中点之间的距离为"足中距".

(1) [ 猜想验证 ] 如图1,当点 P 与点 O 重合时,请你猜想、验证后直接写出"足中距" OC OD 的数量关系是   

(2) [ 探究证明 ] 如图2,当点 P 是线段 AB 上的任意一点时,"足中距" OC OD 的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.

(3) [ 拓展延伸 ] 如图3,①当点 P 是线段 BA 延长线上的任意一点时,"足中距" OC OD 的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;

②若 COD = 60 ° ,请直接写出线段 AC BD OC 之间的数量关系.

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,正方形纸片 ABCD 的边长为12,点 F AD 上一点,将 ΔCDF 沿 CF 折叠,点 D 落在点 G 处,连接 DG 并延长交 AB 于点 E .若 AE = 5 ,则 GE 的长为   

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, ΔABC 是边长为1的等边三角形, D E 为线段 AC 上两动点,且 DBE = 30 ° ,过点 D E 分别作 AB BC 的平行线相交于点 F ,分别交 BC AB 于点 H G .现有以下结论: S ΔABC = 3 4 ;②当点 D 与点 C 重合时, FH = 1 2 ;③ AE + CD = 3 DE ;④当 AE = CD 时,四边形 BHFG 为菱形,其中正确结论为 (    )

A.

①②③

B.

①②④

C.

①②③④

D.

②③④

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 是等边三角形, P ΔABC 内部的一点,连接 BP CP

(1)如图1,以 BC 为直径的半圆 O AB 于点 Q ,交 AC 于点 R ,当点 P QR ̂ 上时,连接 AP ,在 BC 边的下方作 BCD = BAP CD = AP ,连接 DP ,求 CPD 的度数;

(2)如图2, E BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB

(3)如图3, M AC 边上一点,当 AM = 2 MC 时,连接 MP .若 CMP = 150 ° AB = 6 a MP = 3 a ΔABC 的面积为 S 1 ΔBCP 的面积为 S 2 ,求 S 1 S 2 的值(用含 a 的代数式表示).

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, BD 是正方形 ABCD 的一条对角线, E BD 上一点, F CB 延长线上一点,连接 CE EF AF .若 DE = DC EF = EC ,则 BAF 的度数为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 是等边三角形, P ΔABC 内部的一点,连接 BP CP

(1)如图1,以 BC 为直径的半圆 O AB 于点 Q ,交 AC 于点 R ,当点 P QR ̂ 上时,连接 AP ,在 BC 边的下方作 BCD = BAP CD = AP ,连接 DP ,求 CPD 的度数;

(2)如图2, E BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB

(3)如图3, M AC 边上一点,当 AM = 2 MC 时,连接 MP .若 CMP = 150 ° AB = 6 a MP = 3 a ΔABC 的面积为 S 1 ΔBCP 的面积为 S 2 ,求 S 1 S 2 的值(用含 a 的代数式表示).

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, BD 是正方形 ABCD 的一条对角线, E BD 上一点, F CB 延长线上一点,连接 CE EF AF .若 DE = DC EF = EC ,则 BAF 的度数为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知 ΔAOB ΔMON 都是等腰直角三角形 ( 2 2 OA < OM < OA ) AOB = MON = 90 °

(1)如图1,连接 AM BN ,求证: AM = BN

(2)将 ΔMON 绕点 O 顺时针旋转.

①如图2,当点 M 恰好在 AB 边上时,求证: A M 2 + B M 2 = 2 O M 2

②当点 A M N 在同一条直线上时,若 OA = 4 OM = 3 ,请直接写出线段 AM 的长.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,过点 A O 的切线 AC ,点 P 是射线 AC 上的动点,连接 OP ,过点 B BD / / OP ,交 O 于点 D ,连接 PD

(1)求证: PD O 的切线;

(2)当四边形 POBD 是平行四边形时,求 APO 的度数.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,根据尺规作图的痕迹,判断以下结论错误的是 (    )

A.

BDE = BAC

B.

BAD = B

C.

DE = DC

D.

AE = AC

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 D 是斜边 AB 上一点,且 AC = AD

(1)作 BAC 的平分线,交 BC 于点 E ;(要求尺规作图,不写作法,保留作图痕迹)

(2)在(1)的条件下,连接 DE ,求证: DE AB

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为 2 5 ,点 E BC 的中点,连接 AE 与对角线 BD 交于点 G ,连接 CG 并延长,交 AB 于点 F ,连接 DE CF 于点 H ,连接 AH .以下结论:① CF DE ;② CH HF = 2 3 ;③ GH = 2 3 5 ;④ AD = AH ,其中正确结论的序号是   

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔDEF 都是等腰直角三角形, AB = AC BAC = 90 ° DE = DF EDF = 90 ° D BC 边中点,连接 AF ,且 A F E 三点恰好在一条直线上, EF BC 于点 H ,连接 BF CE

(1)求证: AF = CE

(2)猜想 CE BF BC 之间的数量关系,并证明;

(3)若 CH = 2 AH = 4 ,请写出线段 AC AE 的长.

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图, DE ΔABC 的中位线, F DE 中点,连接 AF 并延长交 BC 于点 G ,若 S ΔEFG = 1 ,则 S ΔABC =   

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

ABCD 中, BAD = α DE 平分 ADC ,交对角线 AC 于点 G ,交射线 AB 于点 E ,将线段 EB 绕点 E 顺时针旋转 1 2 α 得线段 EP

(1)如图1,当 α = 120 ° 时,连接 AP ,请直接写出线段 AP 和线段 AC 的数量关系;

(2)如图2,当 α = 90 ° 时,过点 B BF EP 于点,连接 AF ,请写出线段 AF AB AD 之间的数量关系,并说明理由;

(3)当 α = 120 ° 时,连接 AP ,若 BE = 1 2 AB ,请直接写出 ΔAPE ΔCDG 面积的比值.

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题