某公司投入研发费用80万元 万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量 销售量),第一年该产品正式投产后,生产成本为6元 件.此产品年销售量 (万件)与售价 (元 件)之间满足函数关系式 .
(1)求这种产品第一年的利润 (万元)与售价 (元 件)满足的函数关系式;
(2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?
(3)在(2)的条件下,第二年,该公司将第一年的利润20万元 万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元 件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润 至少为多少万元.
关于 的方程 有两个相等的实数根,其中 是锐角三角形 的一个内角.
(1)求 的值;
(2)若关于 的方程 的两个根恰好是 的两边长,求 的周长.
为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量 (单位:台)和销售单价 (单位:万元)成一次函数关系.
(1)求年销售量 与销售单价 的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?
若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是
A. B. 且 C. D. 或
今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.
(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;
(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:
试问去哪个商场购买足球更优惠?
工人师傅用一块长为 ,宽为 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为 时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并在容器外表面进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?