如图,已知两直线l1和l2相交于点A(4,3),且OA=OB,(1)分别求出两条直线对应的函数解析式.(2)当x为何值时,一次函数l1的函数值大于l2的函数值?
(·湖北鄂州,21题,9分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量 ,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上). (1)求小敏到旗杆的距离DF.(结果保留根号) (2)求旗杆EF的高度.(结果保留整数.参考数据:,)
(·湖南益阳)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.(1)如图1,当α=90°时,求∠P1PP2的度数;(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.
(·湖南长沙)若关于x的二次函数y=a+bx+c(a>0,c>0,a、b、c是常数)与x轴交于两个不同的点A(,0),B(,0)(0<<),与y轴交于点P,其图像顶点为点M,点O为坐标原点。 (1)当=c=2,a=时,求与b的值; (2)当=2c时,试问△ABM能否为等边三角形?判断并证明你的结论; (3)当=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值。
(·湖南长沙)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO。(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标。
(·湖南常德)如图,在菱形ABCD中,E是CD上的一点,连接BE交AC于O,连接DO并延长交BC于E。(1)求证:△FOC≌△EOC(2)将此图中的AD、BE分别延长交于点N,作EM∥BC交CN于M,再连接FM即得到图5。 求证:①;②FD=FM