(·湖南长沙)若关于x的二次函数y=a+bx+c(a>0,c>0,a、b、c是常数)与x轴交于两个不同的点A(,0),B(,0)(0<<),与y轴交于点P,其图像顶点为点M,点O为坐标原点。 (1)当=c=2,a=时,求与b的值; (2)当=2c时,试问△ABM能否为等边三角形?判断并证明你的结论; (3)当=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值。
如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0). ⑴求b的值. ⑵求x1•x2的值 ⑶分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论. ⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.
我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对 该特产的销售投资收益为:每投入x万元,可获得利润(万元).当 地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项 目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中 拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的 3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元, 可获利润(万元) ⑴若不进行开发,求5年所获利润的最大值是多少? ⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少? ⑶根据⑴、⑵,该方案是否具有实施价值?
在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,BC=AF,延长DF与BA的延长线交于E. ⑴求证△ABD为等腰三角形. ⑵求证AC•AF=DF•FE
.如图,防洪大堤的横断面是梯形,背水坡AB的坡比(指坡面的铅直 高度与水平宽度的比).且AB="20" m.身高为1.7 m的小明站在大堤A点,测得高压电线杆 端点D的仰角为30°.已知地面CB宽30 m,求高压电线杆CD的高度(结果保留三个有 效数字,1.732).
今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现 有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30 千米;从B地到甲地60千米,到乙地45千米. ⑴设从A水库调往甲地的水量为x万吨,完成下表
调出地
⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)