数列满足.(1)求的表达式;(2)令,求.
(本小题满分分)设数列的前项和为,且,.(Ⅰ)求,,,并求出数列的通项公式;(Ⅱ)设数列的前项和为,试求的取值范围.
(满分12分)直线l 与抛物线y2 = 4x 交于两点A、B,O 为原点,且= -4. (I) 求证:直线l 恒过一定点; (II) 若 4≤| AB | ≤,求直线l 的斜率k 的取值范围; (Ⅲ) 设抛物线的焦点为F,∠AFB = θ,试问θ 角能否等于120°?若能,求出相应的直线l 的方程;若不能,请说明理由.
(满分12分)设f (x) 是定义在 [-1,1] 上的偶函数,f (x) 与g(x) 的图象关于x =" 1" 对称,且当x Î [2,3] 时,g(x) = a (x-2)-2 (x-2) 3(a 为常数). (Ⅰ)求f (x) 的解析式; (Ⅱ)若f (x) 在 [0,1] 上是增函数,求实数a 的取值范围; (Ⅲ)若a Î (-6,6),问能否使f (x) 的最大值为 4?请说明理由.
(满分12分)某专卖店销售一新款服装,日销售量(单位为件)f (n) 与时间n(1≤n≤30、nÎ N*)的函数关系如下图所示,其中函数f (n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大. (Ⅰ)求f (n) 的表达式,及前m天的销售总数; (Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.
(满分12分)某班有两个课外活动小组,其中第一小组有足球票6张,排球票 4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,和乙从第二小组的10张票中任抽1张.(Ⅰ)两人都抽到足球票的概率是多少?(Ⅱ)两人中至少有1人抽到足球票的概率是多少?