江西省上饶市高三第二次模拟考试文科数学试卷
在数列中,.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是 ( )
A. | B. | C. | D. |
设是两条不同的直线, 是两个不同的平面,则下列命题正确的是( )
A.若,则 | B.若,则 |
C.若,则 | D.若,则 |
以下命题中:①为假命题,则与均为假命题
②对具有线性相关的变量有一组观测数据,其回归直线方程是,且,则实数
③对于分类变量与它们的随机变量的观测值来说越小.“与有关联”的把握程度越大
④已知,则函数的最小值为16. 其中真命题的个数为 ( )
A.0 | B.1 | C.2 | D.3 |
已知函数在一个周期内的图像如图所示,其中P,Q分别是这段图像的最高点和最低点,M,N是图像与x轴的交点,且,则A的值为( )
A. | B. | C. | D. |
过抛物线的焦点F作直线AB,CD与抛物线交于A、B、C、D四点,且,则的最大等于 ( )
A.-4
B.-16
C.4
D.-8
如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )
某校从参加高三年级期末考试的学生中随机抽取60名学生,将其数学成绩分成六段:[40,50),[50,60), …[90,100),它的频率分布直方图如图所示,则该批学生中成绩不低于60分的人数为___________.
过双曲线上任意一点P,作与实轴平行的直线,交两渐近线M,N两点,若,则该双曲线的离心率为____.
如图所示将若干个点摆成三角形,每条边(包括两个端点)有个点,相应的图案中总的点数记为,则_______.
已知正方形ABCD的边长为2,E,F,G,H分别是边AB,BC,CD,DA的中点.
(1)从C,D,E,F,G,H这六个点中,随机选取两个点,记这两个点之间的距离的平方为,求概率P.
(2)在正方形ABCD内部随机取一点P,求满足的概率.
圆锥PO如图1所示,图2是它的正(主)视图.已知圆O的直径为AB,C是圆周上异于A,B的一点,D为AC的中点.
(1)求该圆锥的侧面积S;
(2)求证:平面PAC平面POD;
(3)若,在三棱锥A-PBC中,求点A到平面PBC的距离.
已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.
(1)求椭圆的方程;
(2)求的面积的最大值.