(本小题12分)过椭圆的一个焦点且垂直于轴的直线交椭圆于点。(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在过点的直线与椭圆交于两点、,使得(其中为弦的中点)?若存在,求出直线的方程;若不存在,请说明理由
(本小题满分12分)设二次函数在区间上的最大值、最小值分别是M、m,集合. (Ⅰ)若,且,求M和m的值;(Ⅱ)若,且,记,求的最小值.
(本小题满分12分)已知在直角坐标系xoy中,曲线的参数方程为(t为非零常数,为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,直线的方程为.(Ⅰ)求曲线C的普通方程并说明曲线的形状;(Ⅱ)是否存在实数,使得直线与曲线C有两个不同的公共点、,且(其中o为坐标原点)?若存在,请求出;否则,请说明理由
(本小题满分12分)已知c>0,设命题p:函数y=cx为减函数.命题q:当x∈时,函数f(x)=x+> 恒成立.如果p或q为真命题,p且q为假命题.求c的取值范围.
设函数(Ⅰ)求的单调区间;(Ⅱ)证明:当时,;(Ⅲ)证明:当,且…,,时,(1)…(2) ….
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围;(Ⅲ)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.