(本小题满分12分)已知在直角坐标系xoy中,曲线的参数方程为(t为非零常数,为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,直线的方程为.(Ⅰ)求曲线C的普通方程并说明曲线的形状;(Ⅱ)是否存在实数,使得直线与曲线C有两个不同的公共点、,且(其中o为坐标原点)?若存在,请求出;否则,请说明理由
已知各项均为正数的数列满足:,且.(1)求证:数列是等比数列;(2)设,,求,并确定最小的正整数n,使为整数.
一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求恰好抽取了3次卡片的概率.
如图,在组合体中,是一个长方体,是一个四棱锥.,,点且.(Ⅰ)证明:;(Ⅱ)求面与面所成的角的正切值;(Ⅲ)若,当为何值时,.
(本小题满分10分)如图,平面四边形中,,三角形的面积为,, ,求: (1)的长; (2)
(本小题满分12分)已知数列{}满足=,是{}的前项的和,. (1)求;(2)证明: