初中数学

数学兴趣小组同学从"中国结"的图案(图 1 ) 中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是 (    )

A.

用3个相同的菱形放置,最多能得到6个菱形

B.

用4个相同的菱形放置,最多能得到16个菱形

C.

用5个相同的菱形放置,最多能得到27个菱形

D.

用6个相同的菱形放置,最多能得到41个菱形

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.

[ 观察思考 ]

当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图 2 ) ;当正方形地砖有2块时,等腰直角三角形地砖有8块(如图 3 ) ;以此类推.

[ 规律总结 ]

(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加    块;

(2)若一条这样的人行道一共有 n ( n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为   (用含 n 的代数式表示).

[ 问题解决 ]

(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第   

  个图形共有210个小球.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍; 照这样拼图,则第 n 个图形需要  根火柴棍.

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,等边 ΔAOB 如图放置,点 A 的坐标为 ( 1 , 0 ) ,每一次将 ΔAOB 绕着点 O 逆时针方向旋转 60 ° ,同时每边扩大为原来的2倍,第一次旋转后得到△ A 1 O B 1 ,第二次旋转后得到△ A 2 O B 2 ,依次类推,则点 A 2021 的坐标为 (    )

A.

( 2 2020 3 × 2 2020 )

B.

( 2 2021 3 × 2 2021 )

C.

( 2 2020 3 × 2 2020 )

D.

( 2 2021 3 × 2 2021 )

来源:2021年四川省达州市中考数学试卷
  • 更新:2021-08-11
  • 题型:未知
  • 难度:未知

由12个有公共顶点 O 的直角三角形拼成的图形如图所示, AOB = BOC = = LOM = 30 ° .若 OA = 16 ,则 OG 的长为 (    )

A.

27 4

B.

1 4

C.

9 3 2

D.

27 3 8

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,点 B 1 在直线 l : y = 1 2 x 上,点 B 1 的横坐标为2,过点 B 1 B 1 A 1 l ,交 x 轴于点 A 1 ,以 A 1 B 1 为边,向右作正方形 A 1 B 1 B 2 C 1 ,延长 B 2 C 1 x 轴于点 A 2 ;以 A 2 B 2 为边,向右作正方形 A 2 B 2 B 3 C 2 ,延长 B 3 C 2 x 轴于点 A 3 ;以 A 3 B 3 为边,向右作正方形 A 3 B 3 B 4 C 3 ,延长 B 4 C 3 x 轴于点 A 4 ;照这个规律进行下去,则第 n 个正方形 A n B n B n + 1 C n 的边长为     

           (结果用含正整数 n 的代数式表示).

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,正方形 ABC B 1 中, AB = 3 AB 与直线 l 所夹锐角为 60 ° ,延长 C B 1 交直线 l 于点 A 1 ,作正方形 A 1 B 1 C 1 B 2 ,延长 C 1 B 2 交直线 l 于点 A 2 ,作正方形 A 2 B 2 C 2 B 3 ,延长 C 2 B 3 交直线 l 于点 A 3 ,作正方形 A 3 B 3 C 3 B 4 ,依此规律,则线段 A 2020 A 2021 =   

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

将黑色圆点按如图所示的规律进行排列:

图中黑色圆点的个数依次为:1,3,6,10, ,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为   

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有 1 × 1 个小正方形,所有线段的和为4,第二个图形有 2 × 2 个小正方形,所有线段的和为12,第三个图形有 3 × 3 个小正方形,所有线段的和为24,按此规律,则第 n 个网格中所有线段的和为    . (用含 n 的代数式表示)

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数;

图形

五边形数

1

5

12

22

35

51

将五边形数1,5,12,22,35,51, ,排成如下数表;

观察这个数表,则这个数表中的第八行从左至右第2个数为   

来源:2021年湖北省恩施州中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形 依此规律,则第 n 个图形中三角形个数是   

来源:2021年黑龙江省绥化市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中, ABC = 120 ° AB = 1 ,延长 CD A 1 ,使 D A 1 = CD ,以 A 1 C 为一边,在 BC 的延长线上作菱形 A 1 C C 1 D 1 ,连接 A A 1 ,得到 ΔAD A 1 ;再延长 C 1 D 1 A 2 ,使 D 1 A 2 = C 1 D 1 ,以 A 2 C 1 为一边,在 C C 1 的延长线上作菱形 A 2 C 1 C 2 D 2 ,连接 A 1 A 2 ,得到△ A 1 D 1 A 2 按此规律,得到△ A 2020 D 2020 A 2021 ,记 ΔAD A 1 的面积为 S 1 ,△ A 1 D 1 A 2 的面积为 S 2 ,△ A 2020 D 2020 A 2021 的面积为 S 2021 ,则 S 2021 =      

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

观察下列树枝分杈的规律图,若第 n 个图树枝数用 Y n 表示,则 Y 9 - Y 4 = (    )

A.

15 × 2 4

B.

31 × 2 4

C.

33 × 2 4

D.

63 × 2 4

来源:2021年广西玉林市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为(  )

A.

18

B.

19

C.

20

D.

21

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学规律型:图形的变化类试题