如图,正方形ABCD的边长为2,将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到点A为止,同时点F从点B出发,沿图中所示方向按B→C→D→A→B滑动到点B为止,那么在这个过程中,线段QF的中点M所经过的路线围成的图形的面积为 .
如图,已知∠AOB在平面直角坐标系的第一象限中,且∠AOB=30°,其两边分别交反比例函数y=在第一象限内的图象于A、B两点,连结AB,当∠AOB绕点O转动时,线段AB的最小值为
读取表格中的信息,解决问题.满足>1000的n可以取得的最小正整数是 .
n=1 |
||
n=2 |
||
n=3 |
||
… |
… |
… |
如图,平面直角坐标系中,A(-3,0),B(0,4),对△AOB按图示的方式连续作旋转变换,这样得到的第2014个三角形中,A点的对应点的坐标为 .
如图,AB为⊙O的直径,AB=30,正方形DEFG的四个顶点分别在半径OA、OC及⊙O上,且∠AOC=45°,则正方形DEFG的面积为 .
将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有 个小圆.(用含 n 的代数式表示)
【改编题】如图,OP=1,过P作PP1⊥OP且PP1=1,得;再过P1作P1P2⊥OP1且P1P2=1,得;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得=________.
【改编】如图,直线AB,CD相交于点O,OE⊥AB,∠BOD:∠AOE=1:3,则∠AOD等于 度.
如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为 .
如图,在⊿ABC中,∠A﹤90°,∠C=30°,AB=4,BC=6,E为AB的中点,P为AC边上一动点,将⊿ABC绕点B逆时针旋转角()得到,点P的对应点为,连,在旋转过程中,线段的长度的最小值是 .
如图,AB是⊙O的直径,弦BC=4㎝,F是弦BC的中点,∠ABC=60°,若动点E以1 ㎝/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为
如图,在直角坐标系中,四边形ABCD是正方形,A(1,-1)、B(-1,-1)、C(-1,1)、D(1, 1).曲线AAAA…叫做“正方形的渐开线”,其中、、…的圆心依次是点B、C、D、A循环,则点A的坐标是 .
如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=________.