初中数学

平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有()

A.4个 B.8个 C.10个 D.12个
来源:暖春三月,贴心开学测 初二数学第二套
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,点P是△ABC的边AC上一点,连接BP,以下条件中,不能判定△ABP∽△ACB的是(  )

A. B.
C.∠ABP=∠C D.∠APB=∠ABC
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,点A(3,n)在双曲线上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC的周长是(  )

A.8 B.6 C. D.4

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为(  )

A.
B.
C.
D.
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知A、B两地相距900m,甲、乙两人同时从A地出发,以相同速度匀速步行,20min后到达B地,甲随后马上沿原路按原速返回,回到A地后在原地等候乙回来;乙则在B地停留10min后也沿原路以原速返回A地,则甲、乙两人之间的距离s(m)与步行时间t(min)之间的函数关系可以用图象表示为()
A. B.
C. D.

来源:暖春三月,贴心开学测 初二数学第八套
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

l00米长的小棒,第1次截去一半,第2次截去剩下的,第三次截去剩下的,如此下去,直到截去剩下的,则剩下的小棒长为()米 。

A.20 B.15 C.1 D.50
来源:暖春三月,贴心开学测 初一数学第八套
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有

图①图②图③图④

A.4个 B.3个 C.2个 D.1个
来源:2015届山东省泰安市肥城市九年级中考第三次模拟考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

有一批苹果需要装箱,若每箱装25千克,则有40千克装不下;若每箱装30千克,则除剩余20个空箱外其余箱子都装满,这批苹果共有()

A.2760千克
B.3240千克
C.112千克
D.128千克
来源:初二数学第四套
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为()

A.6 B.12 C.54 D.66
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是()
①abc>0;②3a+b>0;③﹣1<k<0;④k>a+b;⑤ac+k>0.

A.1 B.2 C.3 D.4

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()

A. B. C.3 D.4

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:虚线上第一行0,第二行6,第三行21,…,第10行的数是()

A.351 B.702 C.378 D.756
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

O 为坐标原点,点 A B 为抛物线 y = x 2 上的两个动点,且 OA OB .连接点 A B ,过 O OC AB 于点 C ,则点 C y 轴距离的最大值 (    )

A.

1 2

B.

2 2

C.

3 2

D.

1

来源:2021年广东省中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()

A.2 B.4 C.6 D.8

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, P CD 边上一点 (DP<CP) APB=90° .将 ΔADP 沿 AP 翻折得到△ AD'P PD' 的延长线交边 AB 于点 M ,过点 B BN//MP DC 于点 N

(1)求证: A D 2 =DP·PC

(2)请判断四边形 PMBN 的形状,并说明理由;

(3)如图2,连接 AC ,分别交 PM PB 于点 E F .若 DP AD = 1 2 ,求 EF AE 的值.

来源:2018年云南省昆明市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

初中数学选择题