初中数学

我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:与x轴、y轴分别交于A、B,∠OAB=30º,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是(    )

A.6            B.8            C.10             D.12

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,AB与相切于C,的半径为6,OA=10,求AB的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

实践操作
如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
(1)作∠BAC的平分线,交BC于点O;
(2)以O为圆心,OC为半径作圆.
综合运用在你所作的图中,

(1)AB与⊙O的位置关系是       ;(直接写出答案)
(2)若AC=5,BC=12,求⊙O的半径.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一条公路的转弯处是一段圆弧().

(1)用直尺和圆规作出所在圆的圆心;(要求保留作图痕迹,不写作法)
(2)若的中点到弦的距离为m,m,求所在圆的半径.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,菱形ABCD的边长为8cm,∠BAD=120°,半径为cm的⊙O在其内部逆时针连续滚动,且总是保持与菱形ABCD的边相切,当⊙O第一次回到起始位置时,圆心O所走过的路程长度为      cm.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在半径为5的扇形中,=90°,点是弧上的一个动点(不与点重合),垂足分别为

(1)当BC=6时,求线段的长;
(2)在中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点A的坐标为(3,0),直线l与x轴正半轴夹角为30°,点B为直线l上的一个动点,延长AB至点C,使得AB=BC,过点C作CD⊥x轴于点D,交直线l于点F,过点A作AE∥l交直线CD于点E.

(1)若点B的横坐标为6,则点C的坐标为(______,_____),DE的长为       
(2)若点B的横坐标大于3,则线段CF的长度是否发生改变?若不变,请求出线段CF的长度;若改变,请说明理由;
(3)连结BE,在点B的运动过程中,以OB为直径的⊙P与△ABE某一边所在的直线相切,请求出所有满足条件的DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

阅读资料:

如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2-x1|2+|y2-y1|2,所以A,B两点间的距离为AB=
我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x-0|2+|y-0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2
问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为          
综合应用:
如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
①证明AB是⊙P的切点;
②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.

(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);
(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);
(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.求证:BF=DF;
(2)如图,在▱ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,求阴影部分的面积.(结果保留π)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5m的半圆,其边缘AB=CD=20cm,小明要在AB上选取一点E,能够使他从点D滑到点E再到点C的滑行距离最短,则他滑行的最短距离为         m.(π取3)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE.
 
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-10x+24=0的两个根,求直角边BC的长。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,某公园的一角有一块草坪(阴影部分),实线部分是沿草坪外围的一条小路,小路由两条相等的线段AC、BD和圆弧CD组成,其中AC、BD分别与圆弧CD相切于点C、D.经过测量,线段CD与半径OD都为60米,则这条小路的长度为          米.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t=         

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆幂定理试题