如图4,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有( )
A.内切、相交 | B.外离、相交 |
C.外切、外离 | D.外离、内切 |
如图3,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB="10,CD=8,"
那么线段OE的长为( )
A.5 | B.4 |
C.3 | D.2 |
如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C
为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
如图,在平面直角坐标系中,O为坐标原点,P是反比例函数
y=(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、
B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y=(x>0)图象上异于点P的另一点,请以Q为圆心,QO
半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.
如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,
连接BC.若∠A=26°,则∠ACB的度数为 .
如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作
成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 cm.
如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC.
(1)求证:D是 弧AE 的中点;
(2)求证:∠DAO =∠B+∠BAD;
(3)若 ,且AC=4,求CF的长.
在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,
BC=AF,延长DF与BA的延长线交于E.
⑴求证△ABD为等腰三角形.
⑵求证AC•AF=DF•FE
如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,
则∠PCA=( )
A.30° | B.45° | C.60° | D.67.5° |
.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
⑴求证:AC=CD
⑵若AC=2,AO=,求OD的长度.
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.
(1)求证:直线PB是⊙O的切线;
(2)求cos∠BCA的值.
已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为( )
A. | 2 | B. | 4 |
C. | D. |
如图, O为Rt△ABC内切圆, ∠C=90°, AO延长线交BC于D点,
若AC=4, CD="1," 则⊙O半径为( )
A. | B. |
C. | D. |
(本小题满分5分)已知:如图,在中,,点在上,以为圆心,长为半径的圆与分别交于点,且.
(1)判断直线与的位置关系,并证明你的结论;
(2)若,=,求的值.
如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.